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Abstract

This paper reports on experience with using semantically-enabled
network resource models to construct an operational multi-domain
networked infrastructure-as-a-service (NIaaS) testbed called ExoGENI,
recently funded through NSF’s GENI project. A defining property
of NIaaS is the deep integration of network provisioning functions
alongside the more common storage and computation provisioning
functions. Resource provider topologies and user requests can be de-
scribed using network resource models with common base classes for
fundamental cyber-resources (links, nodes, interfaces) specialized via
virtualization and adaptations between networking layers to specific
technologies.

This problem space gives rise to a number of application areas
where semantic web technologies become highly useful - common in-

∗This research is supported by NSF grants ACI-1032573, ACI-1245926 and DOE award
ASCR DE-SC0005286.
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formation models and resource class hierarchies simplify resource de-
scriptions from multiple providers, pathfinding and topology embed-
ding algorithms rely on query abstractions as building blocks.

The paper describes how the semantic resource description mod-
els enable ExoGENI to autonomously instantiate on-demand virtual
topologies of virtual machines provisioned from cloud providers and
are linked by on-demand virtual connections acquired from multiple
autonomous network providers to serve a variety of applications rang-
ing from distributed system experiments to high-performance comput-
ing.

1 Introduction

Cloud provider services like Amazon EC2, Microsoft Azure and RackSpace
are examples of IaaS (Infrastructure-as-a-Service) public cloud providers.
Modern open source technologies like OpenStack [24] and Eucalyptus [22]
permit the creation of private institutional IaaS clouds. In either case,
through the use of a well-defined API, the properly authorized consumer
can provision compute and storage resources for themselves. The virtual
compute and storage infrastructure they get behaves similar to real infras-
tructure and is accessed remotely over commodity Internet. The networking
resources within cloud provider infrastructure are provisioned implicitly.

Figure 1: Customer slice (top) assem-
bled from multiple institutional cloud
and network providers (bottom).

A less known type of IaaS
providers are on-demand network
services (in academic environments
Internet2 [1]) that permit explicit
virtualization of their resources by
users on-demand - the creation of
links between various points within
their networks with well defined
Quality of Service (QoS) characteris-
tics like bandwidth, latency and jit-
ter. Technologies used for this are
typically VLANs or MPLS, although
this is not relevant for the further
discussions in this paper. What
is critical is that for institutional
clouds connected to these networks this enables a markedly different on-
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demand approach to building interconnects between them, distinct from the
more common public cloud approach, where either permanently dedicated
network connections or the best-effort commodity Internet is used as the
interconnect. The type of performance isolation provided by this dynamic
capability is required by many distributed experimental and production ap-
plications - the driving motivation behind our efforts.

We call our approach Networked Infrastructure-as-a-Service (NIaaS) be-
cause of the deep integration of network provisioning functions with the com-
putational and storage provisioning functions. Our high-level goal is the
enabling of a federation of multiple diverse resource providers, i.e. computa-
tional and storage institutional clouds, on-demand networks for the purpose
of customer-driven on-demand creation of complex connected arrangements
of compute, storage and network resources collected from those providers.
Those arrangements, called ’slices’ are virtual network topologies of com-
pute, storage and network resources as defined by the consumer. Slices are
provisioned on-demand and persist for the duration of the consumer need.
They serve as platforms for running multiple concurrent complex distributed
computational activities that are isolated from one another. This contrasts
with the grid approach of running multiple concurrent activities on shared
infrastructure.

In federating multiple providers for this purpose a key problem is in
scheduling and orchestration of resource provisioning actions across many
cloud and network providers, so resulting slice topologies mimic that of the
customer request (see Figure 1) in which semantic web technologies play a
critical role. There are several motivating factors that make them particu-
larly applicable to this environment.

First, the orchestration process is heavily dependent on declarative de-
scriptions of compute, storage and network resources in order to perform its
work: the consumer must be able describe the desired slice topology, the re-
source provider must be able to describe resources available for orchestration
and the system must maintain the state of the currently utilized resources.
Semantic descriptions with their complex hierarchies of entity classes and
property relationships and standardized vocabularies act as the common ab-
straction layer to which all other representations can be converted. Critically,
these can be extended by individual providers to define classes and properties
specific to their environment. The RDFS and OWL entailments allow com-
mon resource management and topology embedding algorithms to operate
on the shared common classes, thus improving their portability. Considering
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the main goal of our work of enabling a multi-provider heterogeneous and
federated NIaaS environment, having such a common and extendable way of
describing resources is a critical property.

Second, common networking computation tasks, like path computation
and virtual topology mapping, can be modeled as subgraph extractions on
the semantic graph [11], that we discuss later in the paper. This allows
new resource management algorithms to be built as procedural code heav-
ily leveraging common operations abstracted as standardized queries that are
independent of the programming environment and implemented efficiently in
common toolsets. Using queries is motivated by similar goals as the develop-
ment of database management systems to replace hardcoded file processing
algorithms: i.e. enabling reuse and automatic optimization.

Third, rule engines can be used to perform additional processing on the
models in a declarative, rather than procedural fashion, which makes them
more portable and verifiable - a critical feature in complex distributed sys-
tems. Finally, once the representations are converted to semantic web for-
mats (in our case OWL DL), they can be operated on using a large selection
of mature tools used for querying (SPARQL) and inference (Pellet, Her-
mit [25, 27]).

The alternatives, as used today in many systems [17, 13, 4], are JSON
or XML-based schemas, encoding only the syntax rules, making them hard
to validate semantically. The relationships between object classes and roles
are modeled as ad-hoc procedural code which differs from implementation
to implementation, rather than explicit object and relationship hierarchy
rigorously encoded in OWL. Resource management code operating on such
representations lacks the ability to leverage common abstractions and opti-
mizations.

Our main contribution lies in designing a set of ontologies that are rel-
evant to NIaaS problem space and constructing a production NIaaS system
that actively uses semantic technologies for autonomous provisioning and
managing such diverse resources at scale (note that in this paper we use
the term ‘resource’ when referring to computational, storage and network
resources, rather than RDF resources). This system is called ExoGENI [6],
part of NSF-funded GENI (Global Environments for Network Innovations)
federation of testbeds supporting distributed large-scale experiments in com-
putational and network sciences.

The following sections discuss related work and detail some of the uses of
these technologies within ExoGENI.
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2 Related work

Semantic descriptions of networks
The initial building block for our work is an RDFS ontology called NDL (

Network Description Language) [3, 16, 29] developed by network researchers
at the University of Amsterdam.

NDL is based on the ITU-T G.805 standard [18], Generic functional
architecture of transport networks and provides an abstract informational
model for connection-oriented transport networks. Transport networks carry
multiple types of traffic, including Internet traffic, however unlike the Inter-
net, they provide capabilities for provisioning bandwidth-on-demand in the
form of channels at potentially different layers (optical, ethernet and so on).
Connections at different layers within transport networks have server-client
relationships with a server layer connection serving as an envelope for sev-
eral client connections. As an example, multiple Ethernet VLANs (virtual
links) can be carried inside a single optical wavelength. Critically, certain
types of networking equipment are capable of adaptations from one layer to
another, i.e. accepting one or more client connections (e.g. VLANs) and
multiplexing them onto a server connection at a lower layer (e.g. optical
wavelength or timeslot). These capabilities act as constraints on pathfinding
operations needed by topology embedding algorithms. The primary use of
NDL has been in GLIF [2], where it is used by individual network providers
for sharing the details of their topologies with each other.

We redefined NDL as an OWL DL ontology and called our variant NDL-
OWL. The reason for redefining it was two-fold - it was a means of future-
proofing our work, as we are interested in exploring the use of OWL DL
constraints and inferences to assist in provisioning tasks and also OWL DL
tools provide a richer set of capabilities compared to RDF/RDFS.

Semantic descriptions in cloud technologies
In mOSAIC [21] the authors present a compute ontology based on a col-

lection of cloud taxonomies (NIST [20], OCCI [23]). This ontology is part
of a larger effort to create a unified cloud API that is semantically enriched
using elements of the ontology. The effort is concentrated on unifying the
views of different cloud providers of varying types (SaaS, PaaS, IaaS) un-
der a single API. Our own compute ontology is also loosely based on NIST
and other taxonomies, but is focused only on a single provider type - IaaS,
however is much richer in terms of its ability to describe network topologies.

In [15] the authors present a system for enterprise cloud management
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that automatically catalogs resources within the enterprise from its various
elements (compute resources, storage resources) and presents the accumu-
lated semantic database for presentation via UI or analytics using SPARQL
queries. The authors also describe a compute ontology focused on detailed
infrastructure element descriptions. While the authors allude to other ele-
ments of their system that are capable of performing infrastructure provision-
ing tasks, their linkage to the semantically-enabled portion is not described.
One interesting property of their system not currently present in ExoGENI is
the ability to automatically collect and convert resource data into semantic
triples. In ExoGENI, site operators must at the moment manually create
semantic descriptions of their resources and their topologies using tools like
Protegé.

In [28] the authors describe a semantically-enabled system meant to as-
sist cloud users to select the appropriate cloud provider based on a variety
of requirements, from the underlying hosting hardware, to the availability of
higher level business software and even their power use. As a whole, the sys-
tem covers multiple XaaS cloud types (IaaS, PaaS, SaaS) and their ontology
is cloud-consumer-centric. They use a semantic reasoner to derive additional
facts based on input data, which can be used to aid user selection of the
appropriate provider.

Semantic grid [10] effort is similar to our own, in that it tried to bring
order to the representation of resources among grid providers, however they
used different resource abstractions, grounded in the services approach i.e.
not what a resource is (a node with this much CPU power, memory, disk),
but what a service installed on the node does. The problems that they solve
using semantic grid, like service composition, are different than the problems
we deal with, namely topology embedding, because they use different types of
constraints: which services can compose with which, rather than e.g. finding
paths across a multidomain provider infrastructure across multiple adapta-
tions.

3 Using semantic models in ExoGENI

Our NIaaS system called ExoGENI [6, 12] serves as a production service
for distributed experimental activities by computer scientists from multiple
universities and labs. The testbed is funded by US NSF and consists of in-
stitutional cloud sites deployed at university campuses and labs across the
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world, connected to research networks capable of providing on-demand vir-
tual connection services (Internet2, NLR, ESnet [14]). In less than two years
of limited operation, ExoGENI has served more than 5000 slices to over a
hundred unique users across a growing number of geographically distributed
sites. ExoGENI testbed is managed by distributed software called ORCA
(Open Resource Control Architecture [9]) that performs multi-cloud orches-
tration across these sites. ORCA uses semantic technologies to drive resource
orchestration decisions to create user slices and this functionality represents
the focus of the paper.

ORCA is a distributed system that has a number of actor types and many
instances of each actor type, some of which are associated with individual
resource providers, some serve as coordination points for distributed resource
scheduling and allocation and some as the entry points for the users to place
their slice requests with the system. Actors communicate with each other us-
ing internally-defined web services protocols. Importantly, semantic resource
descriptions encoded as RDF-XML documents are exchanged between these
actors using these internal protocols.
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Figure 2: Semantic resource models in
ORCA.

The example flow of these doc-
uments is described in Figure 2.
The process begins with the resource
provider supplying a detailed de-
scription of its resources and their
topology to the ORCA Aggregate
Manager or AM - an actor type re-
sponsible for representing resource
providers. There is typically a one-
to-one correspondence between a re-
source provider and a specific AM.
This description, which conforms to
the Substrate Description model, in
the form of an RDF-XML file is loaded by the AM and processed by it. The
description is transformed into another document, this time conforming to
the Substrate Delegation model, which is passed on to the selected ORCA
Broker - an actor responsible for coordination of resource allocations across
providers. The purpose of the Substrate Delegation model is to compress
the detailed topological representation of a provider into something that is
much smaller and less detailed, protects their privacy and is suitable for
inter-domain path-finding.
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An ExoGENI user provides the selected ORCA Controller with an RDF-
XML document describing the topology and properties of the desired slice,
that conforms to the Slice Request model. The document is processed by the
topology embedding workflow using SPARQL queries, inferences and proce-
dural code. The controller then requests from the Broker the available re-
sources and designs a slice manifest, conforming to the Slice Manifest model,
which describes the details of the slice ’as-built’. The manifest topology is an
iso- or homeomorphic mapping of the request onto the graph describing the
topology of the providers. The manifest contains information about which
specific resources were instantiated and any details needed by the user to
operate the resources.

Based on the information in the manifest, the controller communicates
with individual AMs to provision and interconnect elements of the slice,
in parallel filling out the details of the manifest model. Importantly, AMs
update their internal semantic models reflecting the current use of their re-
sources and the controllers update their global views of known used resources
in various aggregates by inserting new facts into the models, like provisioned
hosts or network paths. Finally, when the slice is ready, the manifest is
returned to the user, again, as an RDF-XML document.

The ExoGENI ontologies consist of two parts:
The static class and property vocabularies hosted at http://geni-orca.

renci.org/owl. These are OWL schemas, mostly T-boxes, with a few A-
boxes related to permanent elements of the infrastructure. They consist of
on the order of 6500 statements with approximately 1500 classes and several
hundred object and data properties, which have been validated for consis-
tency using Pellet (v1.5) reasoning engine built into Protegé.

The declarative resource descriptions exchanged by the ORCA ac-
tors, consisting exclusively of A-boxes - assertions about the state and rela-
tionships between network resources, that reference the T-boxes in the static
ontologies. The number of statements in these is linear with the number of
hardware resource elements being described. These are constructed either a-
priori, as in the case of user slice requests to controllers or detailed substrate
descriptions supplied by resource providers to AMs, or on the fly, as is the
case with slice manifests constructed and supplied by controllers to users.
At processing time, the ontologies with A-boxes are merged with ontologies
with T-boxes into a single OWL DL model, which enables inferences and
thus more capable queries on the resources described within the documents.

As a final note on the implementation, ORCA actors utilize the Jena
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Figure 3: Basic classes and object properties of top-level topology ontology

library for creating, manipulating and querying the various models. We
use internal Jena inference engine for running entailments and the built-in
Datalog-like rule engine for rule-based inferences.

ExoGENI ontologies
Our ontology, called NDL-OWL, provides a vocabulary to describe el-

ements of compute, storage and network infrastructure and how they are
interconnected with each other to aid in path finding, topology embedding
and other types of resource management activities. The ultimate goal of this
process is to create a representation language that is sufficiently powerful to
enable generic resource control modules to reason about networked resources
and the ways that the system might share them, partition them, and combine
them. The top-level ontology for this is used for describing the high level
abstraction of a network topology - topology.owl (see Figure 3).

This schema defines a hierarchy of basic classes and object properties
needed to describe network topology abstractions: everything begins with a
base class called NetworkElement that represents any possible resource within
a network. Subclassed off it are NetworkDomains, which represent groupings
of resources under a single administrative control, Devices, which represent
end-points, NetworkTransportElements, a subclass dedicated to elements of
the network through which bits transit - i.e. interfaces and links of various
types and so on. The object properties help relate various network elements
to each other i.e. connectedTo, hasInterface and its inverse property inter-
faceOf that associates nodes, links and their interfaces and label which allows
to associate a variety of label types with network elements e.g. IP addresses,
VLAN or MPLS tags, Ethernet MAC addresses and so on. This latter prop-
erty is critical to properly interconnecting elements of the infrastructure with
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Figure 4: Ontology import graph for multi-layered networks.

Figure 5: Basic classes and object properties of compute ontology

each other as labels must be negotiated to allow connections e.g. a compute
node must be told which VLAN tag to attach itself to in order to properly
connect to other nodes.

NDL-OWL defines subordinate ontologies that help define multiple layers
of transport and routed networks (consistent with [18, 19]) - e.g. optical
(dtn.owl) which describe connectivity in terms of optical wavelengths and
timeslots within those, Layer 2 (ethernet.owl), which describe connectivity in
terms of VLANs, IP (ip4.owl), which provides features necessary to describe
an IPv4 network (IP addresses, netmasks as labels etc) shown in Figure 4.

We added a number of ontologies required to describe the edge compute
and storage resources. Figure 5 shows the class hierarchy of the top-level
compute ontology, which starts with a ComputeElement class as a subclass
of NetworkElement from the upper topology ontology. A ComputeElement
is further subclassed into ServerClouds, Testbeds and ClassifiedComputeEle-
ments. The first two are ways of abstracting multiple physical compute
elements into a simplified definition, used e.g. for delegating resources in
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Figure 6: Simple advertisement of connection between two servers.

the Delegation Model described above. The ClassifiedComputeElements is
a subtree of classes describing various types of compute elements available
in ExoGENI - BareMetalCEs - compute elements that are ’bare-metal’, i.e.
provisioned directly without any virtualization and VMs - compute elements
provisioned using a variety of virtualization techniques (VServer and OpenVZ
containers, KVM and Xen hypervisors [7]). The details of these are not cru-
cial for this paper, however it is important to note that different types of
virtualization offer different performance isolation properties and are used
by different providers in ExoGENI testbed, therefore it is important to en-
able users to request compute nodes with different types of virtualization.

Importantly, none of these ontologies need the vocabulary to describe the
inner workings of each infrastructure element, e.g. a router or a compute
node. Instead they must provide enough information about features and
connectivity between them to support the resource selection and topology
embedding tasks, common in the NIaaS environment.

Using NDL-OWL to describe NIaaS resources
This section demonstrates how the ontologies we described are used to

advertise available resources, request resources from the system or support
the provisioning actions taken by the system.

Figure 6 shows a very simple advertisement by a provider of two hard-
ware servers (Server/A and Server/B) connected by an Ethernet switch
(Renci/6509). The diagram does not show most of the compute element
details, concentrating instead on the means to describe topology and con-
nectivity. The curved yellow line shows the network topology as a subgraph
embedded into the semantic graph annotated with other necessary informa-
tion. A switch matrix of type EthernetNetworkElement indicates that the
connection is at Ethernet and not any other layer, which indicates a path
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constraint. The connection between a server and a switch can be extracted by
following the hasInterface property from Server/A to Server/A/f1/ethernet,
then via linkedTo property, indicating a presence of either a physical or vir-
tual link, to an interface 10GB/1/0/ethernet that belongs to the Renci/6509
switch.

A more complex example in Figure 7 shows a request by a user for a topol-
ogy that has two nodes and a link. The goal of the system is to embed this
request in available substrate by finding a homeomorphic mapping. Again,
the curved line shows the actual requested network topology embedded into
the semantic graph. In addition to nodes that are of type ComputeElement
and a link of type NetworkConnection within Ethernet layer indicated by
atLayer property pointing to EthernetNetworkElement, this semantic model
also has other entities that make it conform to Request model. Namely this
is the Reservation/1 entity of type Reservation from a request.owl ontology
we have defined, which acts as a collection of requested elements, by using
element property to point to requested nodes and links. It also points to the
desired start time and duration of this request by pointing to Term/1 entity
of type Interval that has a beginning and a duration. The classes related to
describing time intervals come from a well-known time ontology vocabulary
http://www.w3.org/time#.

The manifest model (not shown) describes the topology and meta infor-
mation of the provisioned slice in a similar fashion. It also includes all the
statements from the slice request model and has specialized object properties
linking entities of the provisioned resources to the entities of the request, to
indicate exactly which element in the request corresponds to which element
of the provisioned infrastructure. This feature is essential for automated pro-
cessing of the manifests by other systems, which need to request and operate
on provisioned slices.

Using Semantic Queries
In order to produce a manifest of the slice, the system must find an

embedding of the request topology graph in the graph describing the inter-
connected topology of the various providers. This embedding must satisfy a
number of constraints, including resource availability, path continuity, layer-
ing, adaptations as well as bandwidth and latency.

The network path embedding problem has two parts: (1) finding one or
more feasible constrained shortest path in the network topology consisting of
multiple domains and (2) finding the internal elements of the path, i.e., all the
devices, layers, and interfaces so that configuration commands can be correctly
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Figure 7: Simple request for a slice with two nodes connected by a link.

formed to each network element to actually provision the connections on the
path.

Network path computations are similar to query subgraph extraction in
the corresponding RDF graph. For example, a path in the network topol-
ogy is equivalent to a property path in the semantic graph. Complex pattern
queries using SPARQL, can be computationally intractable as studied in [26].
The query evaluation can be done in polynomial time if the pattern only con-
tains the AND and Filter operators. The evaluation becomes NP-Complete
if AND, FILTER, and UNION operators appear in the pattern. If OPT
operator is involved, the problem becomes a PSPACE-complete problem.
Incidentally, computing bandwidth constrained shortest path in networks is
NP-Complete [30].

To implement an inter-domain bandwidth-constrained path-finding algo-
rithm, ORCA relies on a heuristic that combines Gleen-enhanced SPARQL
queries with Dijkstra’s shortest path algorithm. Gleen is a regular path ex-
pression library plugin to the Jena ARQ package [11]. The output of the
algorithm is used to perform provisioning of resources and embedding of cus-
tomer slice topologies into the topology of multiple providers. Gleen supports
the regular expression operators like ’?’ (zero or one), ’*’ (zero or more), ’+’
(one or more), ’—’ (alternation), and ’/’ (concatenation). Gleen was designed
to find path patterns between two entities in a medical ontology so that a
simplified view can be generated out of the complicated class and property
hierarchies. It defines two types of query constructs that can be directly ap-
plied to a triple pattern of the SPARQL query body. In both cases, the path
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Figure 8: Multi-domain constrained shortest path embedding algorithm and
its performance (MacBook Pro 2.4GHz Intel Core 2 Duo, 4GB RAM, Java
1.6.0 43, Jena 2.6.0; 20 runs).

expression is formed by a number of properties recursively using the regular
expression language.

SPARQL 1.1 offers support for regular path expressions, with some lim-
itations [5]. However it does not offer a way to specify the path constraints
that the orchestration process needs, and there are no query constructs to
return the internal path elements through a path query - the elements crucial
to forming the provisioning commands on networking equipment.

The gleen:OnPath construct is used to find all the objects that are con-
nected to the subject via the defined path expression. A triple pattern of
this construct can be expressed as:
subject gleen:OnPath (pathExpression object)

The following simple query returns all the network devices that are reach-
able from a specific source device via one or more hops.

Select ?destination
Where {

source gleen:OnPath
(([ndl:hasInterface]+/[ndl:connectedTo]+/[ndl:interfaceOf]+)+ ?destination ).

}

However, this pattern only returns the destination objects without re-
vealing how the paths are traversed. The second construct gleen:Subgraph is
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defined to accomplish this and can be applied to the SPARQL triple pattern
in the following way:
(inputSubject pathExpression inputObject) gleen:Subgraph (outputSubject output-

Predicate outputObject) .

The three arguments in the object position triple must be unbound and
are the variables to be answered by the query. In this way, all intermediate
resources along with the path edges connecting them are obtained for path
between inputSubject and outputSubject via the pathExpression found via the
first query.

We use the following query to find every hop that a path between device
source and destination traverses within the same network layer.

Select ?a ?b ?c
Where {

(source
([ndl:hasInterface]+/[ndl:connectedTo]+/[ndl:interfaceOf]+)+ destination).
gleen:Subgraph (?a ?b ?c)

}

Our path-finding heuristic is depicted in Fig. 8. It is similar to a K edge-
disjoint shortest path algorithm [8], however instead of generating k candi-
date paths upfront it generates them as it goes marking traversed paths as
unavailable. This approach has known limitations, however works well under
our conditions [8]. Our algorithm takes the substrate RDF model Ms and a
path request P (S,D,C) as the input, where S, D, and C are the source, des-
tination points, and the path constraints respectively. It uses Gleen queries
to construct partial solutions that are checked for validity. It returns a list
of network elements the shortest path that satisfy the constraints if there is
one.

Figure 8 shows the performance of the algorithm on a real multi-domain
topology in ExoGENI, where paths of increasing number of hops must be
computed with enough detail to be provisioned (the provisioning time is
highly variable and is not included in the graph). Due to the sparsity of the
multi-domain graph, which is a function of ExoGENI existing deployments
(a total of 31 provider domains), the algorithm exhibits pseudo-linear behav-
ior. As the degree of connectivity of the multi-domain graph increases, the
running time of the algorithm, in which the Gleen queries dominate, would
also be expected to increase.

Inferences
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ORCA uses OWL entailments to simplify its topology embedding algo-
rithms. While, for example, there can be many types of nodes, i.e. different
compute nodes (virtual machines, bare-metal nodes of different types) or
network switches and there can be different types of links, what matters to
the pathfinding algorithm is what layer the requested connection is at, the
layers of available connection segments, the adaptation capabilities available
within nodes on the path to cross layers and which domains the end nodes
belong to. ORCA runs standard RDFS and OWL entailments, which enables
the algorithm to use these generic concepts in its SPARQL/Gleen queries,
rather than operating on exact resource types. Once the path is computed,
including its intermediate elements, the exact resource types are used for
determining the provisioning actions that need to take place, which are spe-
cialized to each provider and are separate from the pathfinding algorithm.

This approach keeps path finding and topology embedding algorithms
generic, allowing ExoGENI to easily incorporate new resource types as it
evolves and incorporates new resource provider domains.

Another use for inferences in ExoGENI is the validation of slice topology
requests from the users provided to ORCA. In our environment a request, in
the form of RDF-XML document, can be produced by a number of entities
and tools of unknown origin. Prior to processing the request, ORCA must
ensure that semantically it makes sense. While schema validation performs
some of the necessary checks, there are limitations to the expressivity of the
schema, which require augmenting this process. Procedural verification is
not portable and hard to ensure correctness and consistency across imple-
mentations. Instead we use a set of semantic rules expressed as a subset of
Datalog (only arity one and two predicates are allowed), to describe these
additional constraints, which are executed by Jena Datalog engine.

For example, if a user is attempting to embed a broadcast connection (one
with more than two endpoints) that connects multiple domains, each domain
must be mentioned only once. E.g. it is OK to say, ‘I would like to have
a broadcast connection between nodes belonging to domains A, B and C’.
It is NOT OK to say ‘I would like to have a broadcast connection between
nodes belonging to domains A, B and A’, since this actually represents a
poorly formed request for a point-to-point connection. The user tool must re-
normalize the request prior to submitting. The rule expressing this constraint
is shown below:

(?Z rb:violation error(”Domains in broadcast link can’t be repeated”, ?X))
< − (?X rdf:type topo:BroadcastConnection), (?X topo:hasInterface ?I1),
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(?X topo:hasInterface ?I2), notEqual(?I1, ?I2), (?A topo:hasInterface ?I1),
(?B topo:hasInterface ?I2), (?A rdf:type comp:ComputeElement),
(?B rdf:type comp:ComputeElement), notEqual(?A, ?B),
(?A req:inDomain ?D1), (?B req:inDomain ?D2), equal(?D1, ?D2),
(?X topo:hasInterface ?I3), notEqual(?I1, ?I3), notEqual(?I2, ?I3),
(?C topo:hasInterface ?I3), (?C rdf:type comp:ComputeElement),
(?C req:inDomain ?D3), notEqual(?D3, ?D1)

The set of the rules we use covers other constraints and continues to evolve
with the schema and the algorithms.

4 Conclusions and Future Work

In this paper we presented an overview of implementation and use of OWL
DL-based resource representation models in a multi-domain NIaaS ExoGENI
testbed. Using our approach we showed that it is possible to construct an
extensible NIaaS system which can (a) use OWL class and role hierarchies to
describe the system resources; that (b) the topology embedding algorithms
can operate in a generic fashion using a number of standard abstractions
built on SPARQL/Gleen queries as building blocks and (c) that models con-
structed on the fly and exchanged by various software agents can be verified
by a combination of standard entailments augmented with portable logic
rules that account for the semantics not captured in the OWL schemas,
avoiding procedural code. Our work demonstrates the practical uses and
future potential of this type of knowledge representation approaches for ac-
tive management of cyber-resources in a distributed environment on a global
scale.

Our ongoing work concentrates on supporting new resource types and
providers, increasing the complexity of the topology embedding algorithms
and designing an upper ontology for NIaaS testbeds jointly with our col-
leagues from similarly scoped projects around the world.
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[26] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and Complexity of
SPARQL. In The Semantic Web-ISWC 2006, pages 30–43. Springer,
2006.

[27] R. Shearer, B. Motik, and I. Horrocks. HermiT: A highly-efficient OWL
reasoner. In Proceedings of the 5th International Workshop on OWL:
Experiences and Directions (OWLED 2008), pages 26–27, 2008.

[28] A. Tahamtan, S. A. Beheshti, A. Anjomshoaa, and a. M. Tjoa. A Cloud
Repository and Discovery Framework Based on a Unified Business and
Cloud Service Ontology. 2012 IEEE Eighth World Congress on Services,
pages 203–210, June 2012.

[29] J. van der Ham, P. Grosso, R. van der Pol, A. Toonk, and C. de Laat.
Using the network description language in optical networks. In Tenth
IFIP/IEEE Symposium on Integrated Network Management, May 2007.

[30] Z. Wang and J. Crowcroft. Bandwidth-delay based routing algorithms.
In Global Telecommunications Conference, 1995. GLOBECOM ’95.,
IEEE, volume 3, pages 2129–2133 vol.3, 1995.

20


	IaaS-techreport-cover
	sem-web-2-tr

