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AT	A	GLANCE	
• Scientific	discovery	has	long	been	guided	by	the	scientific	method,	which	is	considered	

to	be	the	“gold	standard”	in	science.	
• The	era	of	“big	data”	is	increasingly	driving	the	adoption	of	approaches	to	scientific	

discovery	that	either	do	not	conform	to	or	radically	differ	from	the	scientific	method.	
Examples	include	the	exploratory	analysis	of	unstructured	data	sets,	data	mining,	
computer	modeling,	interactive	simulation	and	virtual	reality,	scientific	workflows,	and	
widespread	digital	dissemination	and	adjudication	of	findings	through	means	that	are	
not	restricted	to	traditional	scientific	publication	and	presentation.	

• While	the	scientific	method	remains	an	important	approach	to	knowledge	discovery	in	
science,	a	holistic	approach	that	encompasses	new	data-driven	approaches	is	needed,	
and	this	will	necessitate	greater	attention	to	the	development	of	methods	and	
infrastructure	to	integrate	approaches.	

• New	approaches	to	knowledge	discovery	will	bring	new	challenges,	however,	including	
the	risk	of	data	deluge,	loss	of	historical	information,	propagation	of	“false”	knowledge,	
reliance	on	automation	and	analysis	over	inquiry	and	inference,	and	outdated	scientific	
training	models.	

• Nonetheless,	the	time	is	right	for	increased	focus	on	the	construction	of	Collaborative	
Knowledge	Networks	for	Scientific	Discovery	designed	to	leverage	existing	data	sources	
and	integrate	traditional	and	emerging	scientific	methods	and	thereby	drive	scientific	
discovery	and	application.	

	

Introduction	

Knowledge	discovery	in	science	refers	to	the	systematic	process	whereby	scientists	draw	logical	
conclusions	regarding	the	world	around	us,	generate	new	theories	based	on	those	conclusions,	
and	share	findings	with	other	scientists	and	the	lay	public,	thus	enabling	critical	review	and	
consensus	before	new	findings	are	added	to	the	collective	body	of	knowledge.	Historically,	
scientific	discovery	has	been	guided	by	the	scientific	method,	which	dates	to	ancient	times	and	
involves	both	a	philosophical	and	practical	approach	to	science.	Indeed,	the	renowned	
philosopher	Aristotle	(384-322	BC)	was	one	of	the	first	to	approach	knowledge	discovery	
through	rigorous,	systematic	observation,	although	it	wasn’t	until	millennia	later	that	the	
scientific	method	was	actually	formalized	and	implemented,	largely	through	the	work	of	
Copernicus	(1473-1543),	Tycho	Brahe	(1546-1601),	Johannes	Kepler	(1571-1630),	Galileo	Galilei	
(1564-1642),	Rene	Descartes	(1596-1765),	and	Isaac	Newton	(1643-1727)	(Gower	1997;	Betz	
2011).	
	
At	first	glance,	the	scientific	method	appears	to	be	relatively	simple	and	straightforward.	In	
sum,	the	method	involves	a	repeating	cycle	of	standardized	steps:	the	process	begins	with	
careful	observation	of	the	natural	world,	the	framing	of	a	question	on	the	basis	of	one’s	
observations,	and	a	review	of	the	existing	body	of	knowledge	to	determine	if	a	reasonable	
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explanation	already	exists.	Assuming	that	the	question	remains	open	ended,	a	scientist	will	
then	formulate	a	hypothesis,	design	and	implement	an	experiment	to	test	the	hypothesis,	and	
analyze	the	experimental	results.	The	analytical	results	are	used	to	formally	accept	or	reject	the	
hypothesis.	The	hypothesis	may	then	be	modified,	with	the	experiment	repeated	or	a	new	
experiment	designed.	Importantly,	the	results	are	then	disseminated	via	presentation	to	peers	
and	publication,	which	allow	for	adjudication1	or	peer	consensus	regarding	the	validity	of	the	
scientific	findings.	This,	in	short,	is	scientific	discovery	via	the	scientific	method.	
	
Revisiting	Charles	Darwin	
As	any	school	child	will	attest,	the	work	of	Charles	Darwin	provides	an	exemplar	of	the	scientific	method	and	the	
many	challenges	involved	in	scientific	discovery	(Burkhardt	1996;	McKie	2008;	Montgomery	2009).	Darwin’s	genius	
perhaps	lies	in	his	keen	ability	to	observe	the	natural	world.	One	of	his	earliest	observations	was	that	similar	
species	are	found	across	the	globe	and	that	individuals	within	a	species	are	not	identical	but	have	local	variation.	
He	questioned	why	multiple	species	exist	instead	of	just	one.	Darwin	continuously	researched	and	reviewed	the	
existing	scientific	literature	(i.e.,	the	established	scientific	body	of	knowledge).	
	
Darwin’s	work	was	influenced	by	the	research	and	writings	of	Thomas	Malthus,	who	found	that	humans	produce	
more	offspring	than	are	needed	to	replace	themselves	and	speculated	that	population	size	would	soon	exceed	the	
available	resources	required	for	survival.	Darwin	also	observed	that	populations	of	plants	and	animals	stay	about	
the	same	size	because	of	limited	resources	and	competition	for	those	resources.	Darwin’s	thinking	also	was	
influenced	by	the	research	and	writings	of	Charles	Lyell,	who	found	that	small,	gradual	geological	processes	can	
produce	large	changes	over	time.	Darwin	made	several	brilliant	inferences	on	the	basis	of	his	scientific	
observations	and	the	work	of	Malthus,	Lyell,	and	others	that	led	him	to	hypothesize	that	species	change	slowly	in	
a	process	of	evolution	from	a	common	ancestor.	He	then	spent	decades	in	observational	experimentation,	
ongoing	analysis	of	his	scientific	findings,	and	refinement	of	his	hypothesis	until	he	eventually	reached	the	now	
famous	conclusion	that	the	origin	of	the	species	lies	in	natural	selection,	or	the	process	whereby	individual	
variation,	coupled	with	competition	among	individuals	for	natural	resources	and	social	cooperation	among	kin	to	
increase	individual	fitness,	determines	differences	among	related	species.		
	
Coincidentally,	while	Darwin	was	refining	his	hypothesis	and	drawing	a	conclusion,	Alfred	R.	Wallace,	a	much	junior	
researcher	who	was	familiar	with	Darwin’s	work,	reached	a	similar	conclusion,	which	he	planned	to	publish	and	
disseminate	to	scientific	peers.	Aware	that	his	work	might	go	unrecognized,2	Darwin	reached	an	agreement	with	
Wallace,	brokered	by	Lyell	and	Joseph	D.	Hooker,	and	reluctantly	published	a	joint	scientific	manuscript	in	1858.	
On	the	Origin	of	Species	by	Natural	Selection	wasn’t	published	until	November	1859,	but	only	as	a	book	chapter,	
not	the	full	book	that	Darwin	had	intended.	Interestingly,	the	scientific	community	reacted	negatively	to	Darwin’s	
work	(e.g.,	Gray	1860);	many	of	Darwin’s	peers	felt	that	he	did	not	have	sufficient	evidence	to	put	forth	his	
hypothesis,	while	others	were	disturbed	by	the	theological,	political,	and	social	implications.	The	scientific	debate	
continued	for	nearly	a	century	until	the	scientific	community	reached	adjudication	on	Darwin’s	hypothesis	and	
scientific	findings	and	established	the	theory	of	evolution	by	natural	selection.	Of	note,	the	lay	debate	continues	
today,	largely	on	theological	and	political	grounds.	
																																																													
1“Adjudication”	is	a	legal	term	that	refers	to	decision	making	in	the	presence	of	a	neutral	third	party	who	has	the	
authority	to	determine	a	binding	resolution	through	some	form	of	judgment	or	award.	In	science,	adjudication	
generally	refers	to	decision	making	and	consensus	building	among	a	group	of	widely	regarded	scientific	experts	on	
the	topic	under	discussion	(Spangler	2003).	
2	“I	never	saw	a	more	striking	coincidence,	if	Wallace	had	my	M.S.	sketch	written	out	in	1842	he	could	not	have	
made	a	better	short	abstract!	Even	his	terms	now	stand	as	Heads	of	my	Chapters…So	all	my	originality,	whatever	it	
may	amount	to,	will	be	smashed.	Though	my	Book,	if	it	will	ever	have	any	value,	will	not	be	deteriorated;	as	all	the	
labour	consists	in	the	application	of	the	theory”—Charles	Darwin	to	Charles	Lyell,	June	18,	1858	(In	Charles	
Darwin’s	Letters.	A	Selection,	F.	Burkhardt	(Ed.),	1996). 
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The	scientific	method	has	certain	desirable	characteristics	that	have	enabled	it	to	withstand	the	
passage	of	time,	even	as	new	scientific	tools	and	techniques	have	been	introduced	to	the	
scientific	process.	For	example,	the	method	is	objective	and	removed	from	all	personal	and	
cultural	biases.	All	hypotheses	are	developed	to	be	consistent	with	accepted	scientific	truths	at	
the	time	that	the	hypothesis	is	generated.	All	measurements	must	be	observable	and	pertinent	
to	the	hypothesis.	The	hypothesis	and	all	conclusions	must	follow	the	principle	of	Occam’s	
Razor	in	terms	of	parsimony,	or	simplicity	with	few	assumptions.	The	hypothesis	also	must	be	
falsifiable	(and	capable	of	being	disproven).	Finally,	the	scientific	findings	must	be	reproducible	
by	other	scientists.	
	
Without	dispute,	the	scientific	method	remains	the	most	common	and	only	validated	approach	
to	scientific	discovery	and	knowledge	extraction.	In	fact,	drug	development	in	the	U.S.	relies	
exclusively	on	the	randomized	placebo-controlled	clinical	trial—the	exemplar	of	the	scientific	
method.	
	
However,	today’s	advancements	in	digital	computing	and	storage	capabilities,	coupled	with	
new	methods	for	scientific	communication,	including	social	media,	are	introducing	new	
approaches	to	scientific	discovery,	each	of	which	brings	challenges	and	opportunities.	In	this	
white	paper,	we	consider	how	the	advent	of	the	digital	age	and	today’s	world	of	“big	data”	are	
changing	scientific	discovery	processes.	We	close	with	a	framework	for	Collaborative	
Knowledge	Networks	for	Scientific	Discovery	designed	to	leverage	existing	data	sources	and	
integrate	traditional	and	new	data-driven	scientific	methods,	allowing	for	unprecedented	
advances	in	scientific	discovery	and	application.		
	
Exploratory	data	sets	and	exploratory	analysis	
Today’s	scientist	has	access	to	numerous	large	data	sets	of	relevance	to	multiple	scientific	
domains.	For	example,	the	National	Oceanic	and	Atmospheric	Administration	maintains	several	
databases	containing	data	on	climate	patterns,	earthquakes,	ozone	levels,	and	ocean	
temperatures;	these	data	are	useful	to	scientists	in	many	fields,	including	environmental	
science,	energy,	public	health,	and	medicine.	Scientists	are	increasingly	accessing	these	data	
sets	for	exploratory	analysis,	which	is	an	approach	used	to	determine	if	a	general	hypothesis	
bears	any	merit	and/or	if	an	experimental	design	is	feasible.	Exploratory	analysis	typically	
begins	with	a	general	hypothesis	or	experimental	design	that	isn’t	well	fleshed	out	and	the	
application	of	a	variety	of	statistical	approaches	and	visualization	techniques	to	identify	and	
validate	data	elements	and/or	determine	if	a	hypothesis	is	testable	using	the	data	(Behrens	
1997;	Gelman	2004;	Diaconis	2011).		
	
For	example,	consider	an	economics	researcher	who	is	interested	in	learning	about	the	loaning	
practices	of	a	large	credit	union,	in	terms	of	the	breakdown	of	mortgage	loans	across	
socioeconomic	sectors.	S/he	requests	access	to	the	credit	union’s	loan	database	in	order	to	
determine	how	the	data	are	structured	and	how	fine-grained	the	available	socioeconomic	data	
elements	are.	The	researcher	determines	that	the	database	contains	data	elements	on	the	age,	
sex,	and	gross	income	of	loan	holders,	as	well	as	the	loan	amount	and	the	location	of	the	
property,	but	it	does	not	contain	information	on	the	ethnicity	of	the	loan	holders.	The	
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researcher	uses	this	information	to	modify	his/her	hypothesis	for	subsequent	testing	using	the	
same	data.	
	
Exploratory	analysis	has	always	been	part	of	scientific	discovery	and,	historically,	has	been	used	
to	generate	the	driving	question	underlying	a	scientific	hypothesis.	However,	in	the	past,	the	
process	was	informal,	slow,	and	observation-based	(e.g.,	detailed	notes	on	the	types	of	foliage	
identified	at	different	altitudes	within	a	given	region);	whereas	today,	it	is	fast,	large-scale,	
data-driven	and	often	involves	extensive	use	of	advanced	statistical	methods	and	visualization	
techniques.	Furthermore,	large	data	sets	are	being	generated	strictly	for	exploratory	analysis,	
and	often	such	data	sets	incur	a	considerable	expense	with	questionable	cost-benefit.3	A	recent	
McKinsey	report	(Manyika,	et	al.	2015),	for	example,	estimates	that	less	than	1%	of	data	
captured	and	stored	from	an	offshore	oil	rig	equipped	with	30,000	sensors	is	actually	used	to	
guide	operations.	The	value	of	the	rest	of	the	data	remains	to	be	determined.	
	
	

Today,	exploratory	analysis	is	fast,	large-scale,	data-driven	and	often	involves	
extensive	use	of	advanced	statistical	methods	and	visualization	techniques.		

	
	
In	terms	of	benefits,	exploratory	analysis	enables	a	scientist	to	quickly	develop	a	more	refined,	
testable	hypothesis	and	rigorous	experimental	design	for	subsequent	hypothesis	testing	
(Behrens	1997;	Gelman	2004;	Diaconis	2011).	Challenges	include	the	costs	involved	with	the	
generation	and	long-term	storage	of	exploratory	data	sets.	In	addition,	drawing	conclusions	
from	an	analysis	of	exploratory	data	sets	can	introduce	error	if	the	data	elements	are	not	
described	with	sufficient	metadata	to	fully	understand	data	structure	and	meaning	or	if	the	
data	elements	have	inherent	biases	due	to	how	they	were	collected.	Additional	challenges	
include	issues	of	privacy	and	the	inadvertent	or	intentional	leakage	of	“sensitive”	data,	
particularly	if	a	scientist	does	not	obtain	the	requisite	authorization	to	access	a	data	set	that	
contains	sensitive	data	or	if	sensitive	data	are	accidentally	provided	to	an	unauthorized	or	third-
party	user	(Behrens	1997).		
	
Data	mining	
Data	mining	often	begins	without	a	hypothesis	and	involves	the	application	of	tools	and	
techniques	from	statistics,	mathematics,	and	visualization	to	identify	previously	unknown	
patterns	and	trends	in	a	data	set	derived	from	one	or	more	existing	databases	(Fayyad,	et	al.	
1996;	Holzinger,	et	al.	2014).	While	data	mining	is	sometimes	considered	a	form	of	exploratory	
data	analysis	(Behrens	1997;	Diaconis	2011),	we	argue	for	a	distinction	between	exploratory	
data	analysis,	which	enables	a	scientist	to	explore	a	data	set	in	terms	of	structure	and	types	of	
data	elements,	including	the	relevancy	of	external	data	sources	(e.g.,	literature	citations)	to	

																																																													
3	The	costs	and	benefits	of	these	exploratory	data	sets	are	an	open	topic	of	discussion;	for	example,	see	
Wilhelmsen,	et	al.	2013	and	Evans,	et	al.	2015	for	discussions	on	the	pros	and	cons	of	capturing	and	storing	whole	
genome	versus	targeted	genome	sequencing	data.	
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data	elements,	and	data	mining,	which	enables	a	scientist	to	identify	previously	unknown	
patterns	in	a	data	set	in	terms	of	relationships	between	data	elements.	We	note	that	new	
statistical	approaches	are	being	developed	to	overcome	some	of	the	limitations	of	both	types	
of	scientific	discovery.	For	example,	the	maximal	information	coefficient,	or	MIC,	overcomes	
the	limitations	of	Pearson’s	correlation	coefficient,	r,	by	allowing	for	the	identification	of	
complex,	nonlinear	relationships	(e.g.,	exponential,	periodic)	between	data	elements	in	data	
sets	of	any	size	(Reshef,	et	al.	2011).4	Suppose	a	microbiologist	generates	a	gene	expression	
data	set	to	identify	genes	involved	in	the	regulation	of	the	cell	cycle.	Using	traditional	statistical	
approaches,	the	scientist	is	able	to	identify	genes	with	strong	deterministic	or	linear	
associations	with	different	aspects	of	the	cell	cycle	(e.g.,	a	gene	that	is	required	for	chromatin	
assembly).	Using	approaches	such	as	the	MIC,	the	scientist	is	able	to	identify	genes	with	
periodic	relationships	with	the	cell	cycle	(e.g.,	a	gene	associated	with	an	established	cyclical	
event	or	an	event	that	occurs	at	a	previously	unknown	frequency	during	the	cell	cycle).	
	
Data	mining	bears	little	resemblance	to	the	scientific	method.	In	particular,	data	mining	is	not:	
	(1)	constrained	to	be	objective;	(2)	consistent	with	accepted	scientific	truths;	(3)	parsimonious;	
or	(4)	falsifiable.	In	addition,	all	measurements	are	observable	only	after	the	fact.	Nonetheless,	
data	mining	offers	benefits,	including	the	ability	to	relatively	quickly	discover	previously	
unknown	relationships	and	thereby	generate	a	new	hypothesis	that	can	then	be	tested	using	
the	scientific	method	(Fayyad,	et	al.	1996;	Holzinger,	et	al.	2014).	Although	often	cited	as	a	
criticism	of	data	mining,	a	key	benefit	is	the	ability	to	generate	multiple	associations	within	a	
single	data	set,	which	may	yield	powerful	new	information,	especially	when	combined	with	
associations	identified	in	other	data	sets.	In	this	regard,	data	mining	can	be	viewed	as	akin	to	
meta-analysis	of	clinical	trial	data.	
	
	
A	key	benefit	of	data	mining	is	the	ability	to	generate	multiple	associations	within	
a	single	data	set,	which	may	yield	powerful	new	information,	especially	when	

combined	with	associations	identified	in	other	data	sets.	
	
	
Challenges	include	the	fact	that	data	mining	requires	extensive	training	beyond	the	skills	of	a	
typical	domain	scientist;	without	such	training,	a	scientist	may	identify	patterns	or	associations	
that	are	not	valid	or	reproducible	(Fayyad,	et	al.	1996;	Behrens	1997;	Diaconis	2011;	Holzinger,	
et	al.	2014).	Further,	there	is	no	commonly	accepted	approach	or	method	for	data	mining,	
which	makes	the	field	somewhat	more	of	an	art	than	a	science	(Fayyad,	et	al.	1996;	Diaconis	
2011).	There	is	also	a	tendency	to	treat	all	findings	as	conclusive	when	they	may	be	chance	

																																																													
4	As	an	aside,	we	note	that	the	theoretical	foundation	of	the	MIC	lies	in	the	concept	of	mutual	information	(MI)	in	
pairs	of	random	variables,	which	was	developed	by	Claude	Shannon,	the	founder	of	information	theory,	more	than	
50	years	ago	(Speed	2011).	The	implementation	of	MI	into	practice	as	MIC	cannot	be	achieved	through	manual	or	
semi-manual	computation	and	instead	requires	significant	digital	computational	power—something	not	available	
until	recently.	
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findings	(Fayyad,	et	al.	1996;	Diaconis	2011).	In	addition,	while	the	power	of	data	mining	
increases	when	multiple	heterogeneous	data	sets	are	integrated	before	the	data	are	mined,	so	
too	does	the	complexity	of	the	process	(Fayyad,	et	al.	1996;	Holzinger,	et	al.	2014).	With	high-
dimensional	data,	multiple	approaches	must	be	used	to	analyze	the	data;	for	example,	
sophisticated	visualization	approaches	may	need	to	be	combined	with	traditional	statistical	
approaches	to	data	mining	(Fayyad,	et	al.	1996;	Diaconis	2011;	Holzinger,	et	al.	2014).		
	
Computer	modeling	
Computer	modeling	involves	conceptual,	mathematical,	computer-generated,	or	physical	
representations	of	real-world	objects	or	phenomenon	(Bowers	2012;	Buytaert,	et	al.	2012;	
Perra	et	al.,	2012;	Berman,	et	al.	2015).	It	is	used	to	test	a	hypothesis	or	observe	and	
manipulate	an	object	or	phenomenon	that	is	otherwise	difficult	(or	unethical)	to	observe	and	
manipulate.	
	
As	an	example,	consider	a	scientist	who	wishes	to	determine	how	the	beta-amyloid	protein	
influences	the	development	of	Alzheimers	Disease.	S/he	develops	a	software	program	using	
established	principles	of	protein	folding	to	visually	explore	in	3-D	different	scenarios	whereby	
beta-amyloid	may	fold	in	the	brain	to	influence	cognitive	function	and	lead	to	the	development	
of	Alzheimers	Disease.	
	
Modeling	represents	a	fundamental	aspect	of	scientific	discovery	and	has	been	used	
throughout	the	history	of	modern	science	(e.g.,	anatomical	models).	The	use	of	computer	
modeling	is	relatively	new,	however,	and	as	such,	computer-driven	modeling	tends	to	be	a	
highly	specialized	tool	as	opposed	to	a	general	tool.	Benefits	of	computer	modeling	include	the	
addition	of	a	potentially	powerful	tool	to	the	formerly	manual	process,	particularly	when	
models	incorporate	the	vast	streams	of	data	that	are	available	from	technologies	such	as	
crystallography	and	other	sophisticated	sources	of	data	(Perra,	et	al.	2012;	Berman,	et	al.	2015).	
Computer	models	become	even	more	powerful	when	they	are	generated	using	data	derived	
from	multidisciplinary	science	(Bowers,	et	al.	2012;	Buytaert,	et	al.	2012).		
	
Challenges,	however,	include	the	fact	that	computer-generated	models	are	only	as	good	as	the	
underlying	data	and	software	programs	used	to	create	them	(Joppa,	et	al.	2013;	Berman,	et	al.	
2015).	In	addition,	the	risk	of	introducing	error	increases	significantly	when	models	are	created	
for	poorly	understood	objects	or	phenomenon,	when	the	data	are	qualitative	or	otherwise	
described	in	a	non-standardized	format,	or	when	models	developed	in	one	field	are	applied	
(without	validation)	to	another	field	or	even	shared	between	different	research	groups	within	
the	same	field	(Bowers,	et	al.	2012;	Buytaert,	et	al.	2012;	Perra,	et	al.	2012;	Joppa,	et	al.	2013;	
Bergman,	et	al.	2015).	Once	introduced,	errors	tend	to	propagate	and	may	even	amplify	
(Buytaert,	et	al.	2012).	Moreoever,	many	models	are	not	designed	to	work	in	a	dynamic,	
flexible,	user-driven,	web	environment	(Buytaert,	et	al.	2012).	Finally,	modeling	costs	can	be	
quite	high,	sometimes	higher	than	the	costs	of	the	instruments	used	to	generate	the	data	that	
are	used	in	the	models	(Berman,	et	al.	2015).	
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Interactive	simulation	and	virtual	reality	
Interactive	simulation	and	virtual	reality	are	similar	to	modeling	in	that	a	computer	is	used	to	
create	realistic	scenarios	for	testing	a	hypothesis	or	manipulating	an	object	or	phenomenon	
that	is	otherwise	difficult	(or	unethical)	to	test	or	manipulate.	However,	the	difference,	as	
defined	herein,	is	that	with	interactive	simulation	and	virtual	reality,	human	behavior,	not	the	
underlying	software	program,	guides	the	outcome	of	the	simulation	or	virtual	experience	(Zyda	
2005;	Kunkler	2006;	Diemer,	et	al.	2015).	
	
Suppose	a	medical	device	company	has	been	developing	a	new	anesthesia	machine.	In	order	to	
obtain	approval	from	the	U.S.	Food	and	Drug	Administration,	the	device	has	to	be	tested	for	
safety	in	Phase	I	and	II	clinical	trials.	To	achieve	this,	the	company	creates	a	“dummy”	patient	
that	is	programmed	to	mimic	physiological	responses	during	particular	types	of	surgeries	in	a	
simulated	operating	room.	A	Phase	I	clinical	trial	is	then	conducted	in	the	simulated	
environment,	using	a	team	of	actual	surgeons,	anesthesiologists,	and	nurses	as	study	subjects.	
	
Interactive	simulation	and	virtual	reality	can	be	used	for	hypothesis	testing	as	part	of	the	
scientific	method,	but	they	also	can	be	used	for	exploratory	analysis.	The	benefits	
include	the	ability	to	investigate	human	behavior	in	the	context	of	technology	or	computer-
assisted	scenarios	that	resemble	the	real	world	(Zyda	2005;	Kunkler	2006;	Diemer,	et	al.	2015).	
Thus,	the	approach	facilitates	both	team-based	science	and	science	on	human	teams.	Several	
challenges	exist,	however.	First,	a	team	with	expertise	in	both	software	development	and	
human	behavior	must	create	the	software	programs	that	drive	the	simulations	and	virtual	
scenarios,	with	careful	attention	to	every	detail	of	the	scenario	(Diemer,	et	al.	2015).	Also,	
human	behavior	in	a	simulated	environment	might	not	be	identical	to	human	behavior	in	the	
real	world;	at	present,	software	programs	cannot	fully	capture	the	true	human	experience,	
including	behaviors	such	as	emotional	reactions	(Kunkler	2006).	Finally,	technological	
challenges	grow	exponentially	with	the	complexity	of	the	scenario,	and	upfront	costs	are	high	
(Zyda	2005).	
	
Scientific	workflows	
Scientific	workflows	refer	to	the	abstract	steps	required	to	complete	a	specific	scientific	task.	
Today,	these	are	typically	designed	as	specialized	workflow	management	systems	that	are	
capable	of	orchestrating	and	automating	many	of	the	steps,	including	data	flow	and,	in	some	
cases,	personnel	(e.g.,	scheduling,	access	rights,	alerts	or	reminders),	required	to	complete	a	
specific	task	and/or	test	a	hypothesis(es)	(Curcin	&	Ghanem	2008;	Perraud,	et	al.	2010;	
Achilleos,	et	al.	2012;	Bowers	2012;	Guo	2013).	The	concept	of	the	automated	scientific	
workflow	appears	to	have	originated	with	an	undated	publication	by	Singh	and	Vouk	(see	
references).	Scientific	workflows	are	used	to	automate	tedious,	time-consuming,	or	highly	
complex	steps	in	experimental	testing	and/or	analysis.	
	
For	instance,	imagine	that	a	biomedical	research	company	relies	on	flow	cytometry,	a	
technique	that	enables	the	visualization	and	quantification	of	the	protein	composition	of	live	
cells,	as	a	critical	part	of	its	drug	discovery	efforts	in	diabetes.	The	company	decides	to	
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automate	much	of	the	process	and	hires	a	software	engineering	team	to	design	a	scientific	
workflow	system	to	automate	and	coordinate	the	technologies	and	research	teams	involved	in	
each	step	of	the	process,	including	isolation	of	blood	cells	from	patients	with	diabetes,	
incubation	of	cells	with	conjugated	antibody(ies),	multiple	washes,	immunofluorescence	
visualization,	and	analysis	to	determine	cellular	subpopulations.	
	
The	design	of	most	scientific	workflow	systems	models	the	actual	scientific	method,	except	that	
the	measurements	are	automated	and	not	always	observable	by	the	scientist.	Moreover,	
scientific	workflows	are	increasingly	being	used	for	automated	deduction	and	inference,	which	
are	steps	that	historically	relied	on	the	scientist.	In	the	example	above,	for	instance,	the	use	of	
flow	cytometry	to	identify	cellular	subpopulations	on	the	basis	of	their	fluorescent	profile	can	
be	more	of	an	art	than	a	science,	especially	when	multiple	fluorescent	conjugates	are	used;	as	
such,	automating	the	process	can	yield	erroneous	or	inconsistent	results.	That	said,	scientific	
workflows	enable	a	scientist	to	conduct	experiments	more	quickly,	efficiently,	and	with	greater	
statistical	power	and	reproducibility	due	to	the	large	data	volumes	that	a	well-designed	
scientific	workflow	can	handle	and	the	ability	to	integrate	heterogeneous	data	sources,	often	in	
real	time	(Perraud,	et	al.	2010;	Achilleos,	et	al.	2012;	Bowers	2012;	Guo	2013).		
	
	
Scientific	workflows	are	increasingly	being	used	for	automated	deduction	and	

inference,	which	are	steps	that	historically	relied	on	the	scientist.		
	
	
While	potentially	quite	powerful,	the	scientist	in	the	realm	of	the	workflow	is	often	dependent	
on	the	technology	and	removed	from	critical	decision-making	steps	(e.g.,	calculations,	
incubation	times,	etc.),	which,	in	the	absence	of	careful	system	design	and	implementation,	
threatens	the	validity	and	reproducibility	of	workflow	findings.	Furthermore,	unless	the	
workflow	steps	are	clearly	annotated	and	openly	accessible,	a	peer	reviewer	will	be	unable	to	
fully	evaluate	and	reproduce	the	scientific	findings	(Bowers	2012).	Moreover,	workflow	design	
can	be	quite	complex,	involving	hundreds	of	individual	analysis	steps,	large	sets	of	
heterogeneous	data,	and	multiple	existing	workflows	that	often	were	not	designed	to	work	
together;	the	complexity	presents	difficulties	in	user-friendliness,	design,	and	capture	and	
record	of	provenance5	(Perraud,	et	al.	2010;	Achilleos,	et	al.	2012;	Bowers	2012;	Gup	2013).	
There	is	also	a	practical	limit	to	the	degree	of	granularity	in	workflow	tasks;	highly	granular	
activities	are	typically	not	feasible	due	to	a	negative	impact	on	overall	system	performance	
(Perraud,	et	al.	2010).	An	additional	concern	is	that	scientific	workflows	can	introduce	
systematic	bias	in	that	errors	(e.g.,	an	incorrect	calculation)	may	be	introduced	and	propagated	
indefinitely	because	automation	makes	it	more	difficult	to	detect	and	correct	errors.	Finally,	
workflows	tend	to	be	very	specialized	and	often	cannot	be	realistically	adapted	for	different	
domains	(Curcin	&	Ghanem	2008).	

																																																													
5	“Provenance”	refers	to	the	capture	of	metadata	that	describes	the	origins	of	the	data,	each	step	of	data	
transformation	and	analysis,	and	a	record	of	versioning	to	identify	how	up-to-date	the	data	are	(Guo	2013).	
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Dissemination	and	adjudication	
Dissemination	and	adjudication	of	scientific	discoveries	are	critical	components	of	scientific	
discovery,	as	these	are	the	processes	through	which	new	scientific	“truths”	are	added	to	the	
collective	scientific	body	of	knowledge	(Smith	2006;	ACS	publications	2013;	Almeida	2013;	Cold	
Spring	Harbor	Laboratory	2014).	Dissemination	has	historically	been	achieved	through	
presentation	to	scientific	peers	and	publication	in	scientific	journals	in	order	to	obtain	critical	
peer	review	and	validation	(or	rejection)	of	scientific	findings	and	inform	the	scientific	and	lay	
communities.	Adjudication	is	the	method	by	which	a	consensus	is	reached	among	scientific	
experts	regarding	the	validity	of	the	scientific	findings	(also	see	footnote	1).	
	
As	an	example	of	the	dissemination	and	adjudication	processes,	assume	a	scientist	delivers	a	
PowerPoint	presentation	on	new	technologies	for	hydrology	at	a	scientific	conference	on	water	
safety.	S/he	receives	immediate	feedback	on	the	presentation	from	colleagues	in	attendance	at	
the	lecture.	On	the	basis	of	that	feedback,	the	scientist	decides	that	an	additional	experiment	is	
required	before	his/her	work	is	ready	for	publication	in	a	peer-reviewed	journal.	To	provide	
another	example,	imagine	a	scientist	intends	to	publish	his/her	new	ceramics	model	in	a	
scientific	journal	focused	on	materials	science.	The	journal	requires	critical	peer	review.6	The	
scientist	submits	the	manuscript	to	the	journal	for	potential	publication,	and	it	is	reviewed	by	
anonymous	peers.	On	the	basis	of	the	peer	review,	the	editor	decides	that	before	the	
manuscript	can	be	published,	the	text	needs	to	be	revised	to	better	frame	the	need	for	a	new	
ceramics	model	in	the	context	of	existing,	similar	models.	
	
Historically,	dissemination	and	adjudication	have	been	key	components	of	the	scientific	method	
and	the	final	screen	before	new	scientific	truths	are	added	to	the	scientific	body	of	knowledge.	
The	benefits	are	tremendous	because	the	process	enables	scientific	findings	to	be	rigorously	
evaluated	by	expert	scientists,	thus	ensuring	the	robustness	and	integrity	of	scientific	findings	
(Smith	2006;	ACS	publications	2013;	Almeida	2013;	Cold	Spring	Harbor	Laboratory	2014).	The	
challenges,	however,	are	growing	in	the	era	of	big	data.	Specifically,	the	digital	world	is	
changing	the	way	that	scientific	findings	are	generated,	presented,	published,	and	catalogued.	
For	example,	traditional,	paper-based,	peer-reviewed	scientific	journals	are	competing	with	
new,	electronic,	open	access	scientific	journals7	that	may	not	require	a	slow,	rigorous	peer	
review,	but	only	a	quick,	minimal	editorial	review	before	publication	(Almeida	2013;	Cold	Spring	

																																																													
6	“Peer	review”	refers	to	the	process	whereby	scientific	journals	or	scientific	funding	organizations	enlist	(for	free)	
the	help	of	colleagues	within	the	same	field	as	the	manuscript	or	grant	proposal’s	investigative	team	to	evaluate	
the	scientific	merit	and	integrity	of	a	document	(Smith	2006).	
7	“Open	access”	scientific	journals	are	online	journals	that	permit	access	to	all	journal	content	without	a	
subscription	fee.	(Cold	Spring	Harbor	Laboratory	2014).	The	premise	is	to	allow	ordinary	citizens	to	access	all	
scientific	findings,	particularly	those	that	are	generated	with	federal	money,	as	a	“public	good”	(e.g.,	
http://publicaccess.nih.gov/),	much	the	same	way	that	federal	salaries	are	released	to	the	public	for	evaluation.	
“Public	goods”,	as	defined	by	economists,	are	those	items	(commodities	or	services)	that	are	both	non-excludable	
and	non-rivalrous;	examples	include	public	parks,	sewer	systems,	highways,	police	services,	etc.	(Samuelson	1954).	
Ironically,	many	journals	require	the	author	to	pay	a	fee	for	open	access	publication. 	
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Harbor	Laboratory	2014).	In	addition,	many	scientists	are	now	publishing	non–peer-reviewed	
scientific	findings	in	electronic	form,	via	websites,	digital	white	papers	and	technical	reports,	
blogs,	webcasts,	YouTube	videos,	etc.	(ACS	publications	2013;	Almeida	2013).	This	approach	
allows	for	rapid	dissemination	of	scientific	findings,	but	it	bypasses	both	the	peer	review	
process	for	publication	and	the	peer	selection	process	for	speaker	presentation	at	a	scientific	
meeting.	That	said,	the	current	peer	review	process	is	not	without	flaw,	in	terms	of	bias	and	
error	(Smith	2006),	so	perhaps	the	shift	to	digital	self-publication	will	reform	the	peer	review	
process	or	kindle	an	entirely	new	form	of	peer	review.	New	hybrid	models	such	as	eGEMs	
combine	peer	review	with	free	publication	and	open	access	permissions;	whether	these	models	
are	fiscally	sustainable	has	yet	to	be	seen.	Another	challenge	is	the	wealth	of	scientific	
information	available	today.	This	dissemination	deluge	makes	it	challenging	to	adjudicate	
existing	findings	and	identify	important	new	findings	that	may	become	lost	in	the	wealth	of	
available	data	(i.e.,	the	“long	tail	of	science”)	(Trader	2012).	
	
Knowledgebases	
Traditionally,	the	dissemination	and	adjudication	of	scientific	knowledge	involve	social	
processes;	however	the	storage,	integration,	search,	and	inference	of	knowledge	is	rapidly	
changing	to	a	hybrid	model	that	relies	equally	upon	humans	and	large,	complex,	collections	of	
digital	information	that	include	data,	relationships	between	data	elements,	human	assertions	
on	the	data,	and,	in	some	instances,	capabilities	for	automated	cognitive	processing:	
knowledgebases.	The	term	“knowledgebase”	was	introduced	in	the	1970s	(Jarke,	et	al.	1978)	to	
distinguish	it	from	the	existing	database	of	the	time,	which	essentially	stored	data	in	tabular	
form	for	user	access	via	query.	The	term	remains	loosely	defined,	but	a	knowledgebase	can	be	
considered	to	be	a	computing	system	in	which	assertions	are	represented	and	persisted	within	
an	overarching	ontological	framework	that	provides	the	semantic	context	and	that	allows	for	
querying	and	computing	across	assertions.	The	human	user	is	integral	to	the	knowledge	derived	
from	and	contained	within	the	knowledgebase;	and,	in	some	cases,	the	system	can	be	
structured	to	derive	new,	automated	assertions	based	on	machine	learning	or	new	data.	While	
traditional	databases	have	evolved	to	become	transaction-based	and	relational	and	can	be	part	
of	a	knowledgebase	system,	knowledgebases	remain	differentiated	in	that	the	human	user’s	
ability	to	dynamically	access,	add	to,	and	use	the	knowledge	is	an	essential	part	of	the	design	
and	function	of	the	system	(e.g.,	Wikipedia)	(Pugh	&	Prusak	2013).		
	
Completely	automated	knowledgebases	are	under	development,	but	automated	curation	of	
human	assertions	is	not	yet	possible	and	may	never	be.	Nonetheless,	emerging	
knowledgebases	are	incorporating	sophisticated	algorithms	for	automated	and	semi-
automated	structuring,	parsing,	summarization,	retrieval,	and	visualization	of	information.	
Leading-edge	production	knowledgebases	currently	contain	109	to	1011	assertions	mined	from	a	
variety	of	unstructured	and	semi-structured	data	sources,	including	Wikipedia	and	PubMed	
(Bordes,	et	al.	2015;	Southern	2015).	Prominent	commercial	examples	of	knowledgebases	
include	the	IBM	Watson	system	and	Elsevier	Pathway	Studio;	proprietary	examples	include	
WalMart’s	Social	Genome	and	Google’s	Knowledge	Graph;	open	source	systems	include	
OpenBEL,	Open	PHACTS,	and	DARPA’s	DeepDive.	Other	examples	include	the	Semantic	Web		
and	the	Linked	Data	movement.	
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The	use	of	knowledgebases	in	scientific	research	is	growing.	For	instance,	the	GenBank	
knowledgebase	allows	one	to	search	for	specific	genes	and	then	identify	a	wealth	of	curated	
information	about	that	gene	and	related	genes	and	external	data	sources.	The	GeneOntology	
(GO)	knowledgebase	provides	annotation	on	genes,	biological	processes,	cellular	components,	
and	molecular	functions	and	has	been	prominent	in	the	application	of	knowledgebases	for	new	
statistical	approaches	such	as	enrichment	analysis	(Mi,	et	al.	2013).	As	scientists	become	more	
aware	of	the	benefits	of	knowledgebases,	and	as	the	quality	and	quantity	of	their	assertions	
increase,	their	application	in	scientific	discovery	is	expected	to	grow.	
	

	
Emerging	knowledgebases	are	incorporating	sophisticated	

algorithms	for	automated	and	semi-automated	structuring,	parsing,	
summarization,	retrieval,	and	visualization	of	information.	

	
	
Major	challenges	in	the	development	of	knowledgebases	for	scientific	discovery	include	the	
costs	of	human	curation,	in	terms	of	the	amount	of	time	and	experience	required	to	contribute	
to	a	knowledgebase	in	a	meaningful	way,	and	the	lack	of	incentives	for	scientists	to	contribute	
to	knowledgebases,	especially	those	perceived	to	be	outside	of	a	scientist’s	area	of	expertise.	
As	exemplified	in	the	knowledgebase	systems	listed	above,	recent	research	has	advanced	our	
understanding	of	how	to	construct	knowledgebases,	including	the	incorporation	of	probabilistic	
models,	structured	representation	of	unstructured	data,	deep-learning	systems,	question-
answer	schemas,	and	natural	language	processing	algorithms.	Recent	research	also	has	
advanced	our	understanding	of	how	to	integrate	knowledge	from	different	sources	with	
differing	quality	and	differing	semantics	(Southern,	2015;	Nickel	2015).	For	example,	DeepDive	
is	built	upon	a	probabilistic	graph	model	that	allows	for	the	encoding	of	assertions	and	
relationships	between	data	elements	that	have	inaccuracies,	such	as	those	that	are	derived	
from	predictive	models	and	data-driven	approaches,	along	with	assertions	that	have	higher	
validity.	The	system	uses	inference	engines	to	mine	the	relationships,	as	well	as	the	strength	of	
the	assertions,	in	order	to	construct	different	“world	models”	upon	which	new	inferences	can	
be	made.	These	advances	show	promise,	but	the	human	user,	the	scientist,	remains	the	
roadblock	in	the	further	development	and	widespread	application	of	knowledgebases	for	
scientific	discovery.		
	
The	Big	Picture:	The	Future	of	Knowledge	Discovery	in	Science	
We	recognize	that	there	have	always	been	scientific	approaches	that	do	not	rely	on	the	
scientific	method,	as	others	have	argued	previously	(e.g.,	Cleland	2001).	Yet,	the	scientific	
method	remains	the	“gold	standard”	in	terms	of	scientific	discovery.	The	wealth	of	data	
available	today	offers	the	unprecedented	opportunity	to	conduct	science	in	ways	never	before	
envisioned:	real-time	science,	real-world	data,	and	new	methods	of	scientific	discovery.	In	
embracing	new	approaches	to	scientific	discovery	that	are	not	necessarily	aligned	with	the	
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scientific	method,	or	maybe	even	contradict	it,	we	must	consider	how	to	best	employ	and	unify	
the	new	approaches	with	each	other	and	with	the	traditional	scientific	method.	
John	Tukey,	considered	by	many	to	be	the	most	influential	statistician	in	modern	times,	once	
stated:	“The	best	part	of	being	a	statistician	is	that	you	get	to	play	in	everyone’s	backyard.”	
Among	Tukey’s	many	accomplishments	are	the	introduction	of	the	terms	“bit”	(in	1946)	and	
“software”	(in	1958)	and	the	concepts	and	methods	of	exploratory	data	analysis,	data	mining,	
the	Tukey	Fast	Fourier	Transformation,	and	a	variety	of	other	statistical	and	mathematical	
approaches	for	scientific	discovery,	many	of	them	also	named	after	him	(Bittrich	2000;	
Leonhardt	2000;	Brillinger	2002).	Tukey	also	introduced	the	term	“uncomfortable	science”,	
which	has	been	described	as	lying	somewhere	between	classical	mathematical	statistics	and	
“magical	thinking”	(Diaconis	2011).	The	concept	is	that	in	many	instances,	scientific	inference	
can	and	must	be	made	from	intuition	and	exploration,	rather	than	controlled	experimentation,	
using	a	finite	amount	of	potentially	rich	data	that	are	flawed	and	often	nonreplicable.8	Tukey	
died	in	2000,	before	the	introduction	of	the	terms	“big	data”	and	“Internet	of	Things”,	but	one	
can	bet	that	he’d	be	the	first	to	take	advantage	of	the	many	opportunities	that	the	
“datafication”	of	society	has	provided	(Bertolucci	2013).		
	
	

The	wealth	of	data	available	today	offers	the	unprecedented	opportunity	to	
conduct	science	in	ways	never	before	envisioned:	real-time	science,	real-world	

data,	and	new	methods	of	scientific	discovery.	
	

	
Another	forward-thinking	scholar	is	the	late	James	(Jim)	Gray,	whose	last	position	was	as	a	
Technical	Fellow	and	Manager	of	the	Bay	Area	Research	Center	at	Microsoft.	In	addition	to	his	
pioneering	work	on	large	databases	and	transaction	processing	systems,	Gray	introduced	the	
concept	of	the	Fourth	Paradigm	for	science	(Hey,	et	al.	2009).9	While	Gray’s	initial	focus	was	on	
exploratory	analysis	and	data-intensive	scientific	computation,	the	Fourth	Paradigm	essentially	
represents	the	radical	transformation	of	the	scientific	method	from	hypothesis-driven	to	
hypothesis-generating	science,	as	described	herein.10	Gray’s	paradigm	was	developed	in	the	
late	1990s	and	early	2000s,	but	his	genius	lies	in	his	vision	for	today’s	world,	just	a	decade	or	
																																																													
8	“Far	better	an	approximate	answer	to	the	right	question,	which	is	often	vague,	than	an	exact	answer	to	the	
wrong	question,	which	can	always	be	made	precise.”—John	Tukey,	1962,	The	future	of	data	analysis.		Annals	of	
Mathematical	Statistics,	33,	1–67	(quoted	on	pp.	13-14).		
9After	Gray’s	death,	Alex	Szalay	and	colleagues	formally	introduced	the	concept	of	the	“Fourth	Paradigm”,	with	his	
co-authored	publication	in	the	journal	Science	(Bell,	et	al.	2009).	
10During	Gray’s	last	lecture	on	January	11,	2007	[http://research.microsoft.com/en-
us/um/people/gray/jimgraytalks.htm],	he	is	quoted	as	stating	the	following:	“The	world	of	science	has	changed,	
and	there	is	no	question	about	this.	The	new	model	is	for	the	data	to	be	captured	by	instruments	or	generated	by	
simulations	before	being	processed	by	software	and	for	the	resulting	information	or	knowledge	to	be	stored	in	
computers.	Scientists	only	get	to	look	at	their	data	fairly	late	in	this	pipeline.	The	techniques	and	technologies	for	
such	data-intensive	science	are	so	different	that	it	is	worth	distinguishing	data-intensive	science	from	
computational	science	as	a	new,	fourth	paradigm	for	scientific	exploration.”	(Hey,	et	al.,	2009). 
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two	later,	where	nearly	every	scientific	domain	is	moving	toward	data-intensive	and	data-
enabled	scientific	discovery.	This	shift	involves	traditional	fields	such	as	physics	and	astronomy,	
which	have	always	had	access	to	rich	data	sources	but	are	now	facing	unprecedented	
computational	and	analytical	challenges,	and	emergent	fields	such	as	environmental	science,	
which	has	only	recently	had	access	to	the	wealth	of	distributed	data	available	from	
environmental	sensors	and	satellites.	Even	the	“soft”	sciences	such	as	social	science	and	
political	science	are	recognizing	the	power	of	data	derived	from	social	media	data,	mobile	
devices,	and	“smart	cities”.	Moreover,	applied	fields	such	as	medicine	are	embracing	the	Fourth	
Paradigm	and	these	myriad	new	data	sources.	For	example,	in	2011,	the	National	Research	
Council	organized	an	ad	hoc	committee	to	develop	a	framework	for	a	unified	taxonomy	of	
human	disease	that,	when	implemented,	will	accelerate	progress	toward	precision	medicine,	
which	is	a	new	area	of	medicine	that	aims	to	personalize	medicine	through	the	integration	of	
data	on	individual	variability	in	genes,	environment,	and	lifestyle	in	order	to	identify	the	most	
appropriate	medical	monitoring	and	treatment	plan	for	any	given	patient	(National	Research	
Council	2011).	The	committee’s	work	largely	motivated	President	Obama’s	January	2015	
announcement	during	the	State	of	the	Union	Address	on	a	new	National	Initiative	in	Precision	
Medicine	(Collins	&	Varmus	2015).	
	
A	Framework	for	Scientific	Discovery	in	the	Era	of	Big	Data:	The	Collaborative	
Knowledge	Network	
The	time	is	right	to	whole-heartedly	embrace	the	flexibility	and	power	that	new	approaches	to	
scientific	discovery	offer,	while	maintaining	the	power	that	the	traditional	scientific	method	
holds.	
	
The	scientific	approaches	presented	in	this	white	paper	are	increasingly	being	adopted	by	
scientists;	however,	there	remains	hesitancy	about	their	roles	and	legitimacy	in	the	scientific	
process,	a	lack	of	training	in	and	incentives	for	their	use,	and	the	need	for	additional	research	to	
tailor	and	improve	these	approaches	for	scientific	discovery.	We	argue	that	a	primary	challenge	
in	moving	towards	a	combination	of	hypothesis-	and	data-driven	science	is	the	integration	of	
approaches	at	a	community	level.	
	
The	National	Research	Council’s	framework	to	create	a	path	toward	personalized	medicine	
includes	the	concept	of	a	Knowledge	Network	of	Disease	as	a	federated	discovery	network	
organized	around	an	Information	Commons	of	structured	patient-centric	data	based	largely	on	
genomics	and	including	patient	medical	history,	current	signs	and	symptoms,	etc.	(National	
Research	Council	2011).	We	suggest	a	similar,	but	broader	framework	for	a	Collaborative	
Knowledge	Network	for	Scientific	Discovery	(Figure	1).	The	envisioned	network	would	build	
upon	the	knowledgebases	that	are	already	being	developed,	but	through	an	open,	community-
based	effort	designed	to	link	these	knowledgebases	and	thereby	create	a	knowledge	network	
for	scientific	discovery.	The	effort	would	involve	not	only	scientific	experts,	but	all	stakeholders,	
including	policy	makers,	industry	representatives,	and	even	ordinary	citizens,	thereby	enabling	
nontraditional	data	sources	and	data	types	to	drive	scientific	discovery.	Indeed,	scientists	today	
have	access	to	an	abundance	of	new	data	sources	and	data	types,	which	we’ve	classified	as:	(1)	
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archetypal	or	visible	big	data	such	as	the	large,	well-curated,	public	data	sets	available	from	
NASA	and	other	large-scale	research	initiatives;	(2)	crowd-sourced	or	supernova	big	data	such	
as	the	moment-to-moment	data	sets	available	from	Twitter	and	the	Internet	of	Things;	and	(3)	

Figure	1.	Conceptual	framework	for	the	proposed	Collaborative	Knowledge	Network	for	
Scientific	Discovery.		
	
long-tail	or	dark	big	data	such	as	those	hard-to-find	data	sets	held	by	small	scientific	teams	and	
amateur	or	citizen	scientists.	Efforts	such	as	Wikipedia	provide	a	model	for	open,	collaborative,	
community-governed	knowledge	accumulation	(Cohen	2014).	A	community-driven	and	
community-governed	knowledge	network	could	revolutionize	scientific	discovery	and	move	
science	in	directions	not	imaginable	today.			
	
Closing	Considerations	
The	Collaborative	Knowledge	Network	for	Scientific	Discovery,	as	proposed	and	envisioned	
herein,	will	require	new	scientific	methods,	approaches,	and	policies	in	order	to	fully	realize	its	
potential.	For	example,	issues	related	to	data	provenance	will	need	to	be	addressed,	as	will	
issues	related	to	funding	for	ongoing	development	and	long-term	sustainability.	The	integration	
of	knowledge	assertions	generated	through	different	scientific	approaches	that	have	differing	
levels	of	certainty	and	expressiveness	remains	a	fundamental	challenge,	but	one	where	
progress	is	being	made.		These	are	not	trivial	issues,	as	the	creation	of	new	knowledge	from	
collective	knowledge,	particularly	when	automated,	yields	complicated	issues	regarding	
intellectual	property	and	ownership.	With	multiple	stakeholders	involved	in	the	envisioned	
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knowledge	network	(e.g.,	academics,	industry,	government,	the	public),	ownership	issues	will	
need	to	be	resolved.	Ongoing	development	and	long-term	sustainability	bring	related	
challenges	that	likely	will	require	significant	up-front	community	buy-in.	Complex	models	for	
provenance	and	sustainability	may	need	to	be	developed	to	account	for	conflicting	interests.	
Furthermore,	today’s	students	and	workers	aren’t	being	trained	for	the	Fourth	Paradigm	of	
science	and	often	lack	the	critical	thinking	skills	required	to	objectively	navigate	through	the	
abundance	of	data	available	today	and	make	meaningful	inferences	about	the	world	around	
them.	This	gap	in	training	and	workforce	development	will	need	to	be	addressed	in	order	to	
ensure	that	a	knowledge	network	is	not	misused.	
	
Perhaps	the	most	important	consideration,	however,	is	the	development	of	new	approaches	to	
enable	the	critical	evaluation	and	adjudication	of	scientific	findings	in	the	most	traditional	
sense.	For,	in	the	absence	of	valid	automated	methods	for	drawing	conclusions	regarding	
scientific	“truths,”	scientists	will	continue	to	face	a	data	deluge	without	a	rational	path	toward	
peer	consensus,	erroneous	knowledge	may	be	introduced	and	propagated,	and	the	lay	public	
will	lose	trust	in	science.	Indeed,	the	public	already	has	a	tendency	to	mistrust	science,	
especially	when	scientific	findings	go	against	intuition	or	personal	belief	(Achenbach	2015).	
Without	a	facile	method	to	determine	the	legitimacy	of	scientific	findings,	any	public	mistrust	in	
science	will	only	increase.	In	the	absence	of	public	trust,	science	itself	will	suffer.	
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