
http://www.renci.org/techreports
RENCI Technical Report Series

TR-08-02
Howard M. Lander

Robert J. Fowler
Lavanya Ramakrishnan

Steven R. Thorpe
April 25, 2008

Stateful Grid Resource
Selection for Related Asynchronous Tasks

Stateful Grid Resource Selection for Related Asynchronous Tasks

Howard M. Lander and Robert J. Fowler
Renaissance Computing Institute, The University of North Carolina

Chapel Hill, North Carolina
{howard, rjf}@renci.org

Steven R. Thorpe
MCNC

Research Triangle Park, North Carolina
thorpe@mcnc.org

Lavanya Ramakrishnan
Indiana University

Bloomington, Indiana
laramakr@cs.indiana.edu

Abstract

In today’s grid deployments, resource selection is based
on the prior knowledge of the performance characteristics
of the application on a particular resource and on real-time
monitoring status of the resource such as load on the sys-
tem, network bandwidth, etc. Any lag between a resource
selection decision and the time the job appears in the sys-
tem’s monitoring facility will cause subsequent decisions to
be based on incorrect information. If two or more jobs ar-
rive within this hysteresis window, the incorrect assessment
of system state can have negative consequences on job re-
sponse time and system throughput. In this paper we de-
scribe a stateful resource selection protocol we designed
to mitigate this problem for a real time storm surge mod-
eling project. We present results from real experiments on
a regional grid. We use emulation to compare and study
the effect of our protocol under varying load conditions.
Based on our evaluation we argue that the enhanced pro-
tocol should be made available as a globally-aware grid
resource selection service.

1 Introduction

Grid resources are often shared by multiple user commu-
nities and can vary greatly in performance and load charac-
teristics. Good resource selection techniques in such envi-
ronments are critical to obtain reasonable Quality of Ser-
vice(QoS) assurances. Methods used today make decisions
by mapping application resource requirements onto a sys-
tem model based on static system properties and system
status information such as queue lengths, load factors, and
network bandwidth. This real-time information is provided
to application middleware by grid and cluster services such

as Globus Monitoring and Discovery Service (MDS)[2, 11]
or Network Weather Service (NWS)[25]. Typically, on-line
resource selection uses “best-effort” and “stateless” meth-
ods to try to balance the application workload across a
set of target clusters. In comparison, if the entire work-
load can be examined offline, as in the case of workflows
and static ensembles, then offline planning techniques such
as gang scheduling and related scheduling algorithms are
used[13, 18].

Stateless resource selection and planning techniques
used today have problems in certain production environ-
ments. Consider the case in which several jobs can arrive
within a short time interval. In particular, there is a signif-
icant lag between the time when a resource selection de-
cision is made and the time this selection is reflected in the
monitoring data for the selected resource. Viewing resource
selection as a system control problem, this lag induces hys-
teresis that causes decisions to be made with out of date
information. For example, if several jobs arrive before sys-
tem state information is updated, all of the decisions will be
made with the same information. The consequence is that
all the jobs may be sent to a single (overloaded) resource
when there are other idle resources in the system. This im-
pacts performance by increasing application response time
and leaving other available resources under utilized. These
effects are particularly bad for grid applications such as
weather prediction, economic forecasting, hurricane predic-
tion, etc. that have strict timeliness constraints.

In a previous paper[20] we described our experience in
creating a distributed software infrastructure for a storm-
surge modeling application that uses an ad-hoc set of grid
resources. Storm-surge predictions are sensitive to vari-
ous physical parameters that are not known with certainty.
Thus, the accuracy and confidence of prediction is increased
by running parameter sweep ensembles that cover the space

1

of possible inputs. Timeliness of the results is critical to
emergency responders in coastal areas. The goal of our in-
frastructure is to harness compute cycles on grid infrastruc-
ture to run model simulations in parallel on multiple cluster
resources. Input data sets for the model runs are derived
from sensors and various simulations and arrive over time
through a data distribution network. Hence, there is no a
priori knowledge of the size or number of model runs in
the ensemble. The resource selection protocol in this en-
vironment must therefore be able to accept a stream of job
requests and adapt dynamically based on the measured state
of the resources in the system as provided by grid monitor-
ing services and on the state of other ensemble member runs
that have entered the system.

Our resource scheduling protocol use two sources of sys-
tem information. MDS (both the pre-web services and web
services versions) reports the number of free CPUs on each
cluster. NWS generates forecasts for future network band-
width between nodes. Our resource selection protocol uses
these data sources and knowledge of system capabilities to
produce a ranked list of available cluster resources. We
initially used a resource selection protocol in which each
model run was independently directed to the most capa-
ble free resource without considering any other previously
scheduled model runs. We discovered that the lag in the
update of grid-wide system state allowed the resource se-
lector to continue to direct many jobs to a single resource,
leaving it with a high workload while other, less capable re-
sources remained idle. This hysteresis in the decision pro-
cess cannot be eliminated just by improving the measure-
ment process because a significant part of the lag is due
to the preparatory work (data staging, queuing, etc.) done
between the time the decision is made and when the job ac-
tually occupies computational nodes on the target.

Although a priori offline decision rules are not possi-
ble in this context, the resource selector can generate an
improved estimate of the future state of the system if it
uses knowledge of its own actions in the process. Thus,
we present a stateful resource selection technique that uses
information about its recent job submission decisions that
have not yet affected the reported system state. We eval-
uate the stateless and stateful implementations of resource
selection in the context of our environment. We evaluate the
performance of the stateful protocol under varying load con-
ditions and make a case for a grid-level resource selection
interface that implements our stateful protocol to improve
the QoS for all applications. The main contributions of this
paper are (a) a “stateful” resource selection protocol, (b) ex-
perimental data that validates the need for stateful resource
selection over state of the art techniques, and (c) extended
evaluation that shows the need for grid-level resource selec-
tion interfaces.

2 Background

Our driving application is part of the Southeastern
Universities Research Association (SURA) Southeastern
Coastal Ocean Observing and Prediction (SCOOP)[4] pro-
gram. One goal of SCOOP is to advance the study of the
effects of hurricane activity on coastal areas. An accurate
and timely storm surge prediction system is an essential tool
for planning for and responding to hurricanes. We describe
the portion of the system needed to motivate our work on
resource selection.

We have implemented a distributed software infrastruc-
ture used to run ADCIRC[1], a parallel finite-element storm
surge model. Our infrastructure enhances SCOOP’s study
of hurricane activity by enabling multiple instances of the
storm surge model to be executed in parallel. Each individ-
ual run of the storm surge model is forced by a wind field
derived from forecast storm track generated by an ensemble
of simulations and other sources. The approach is required
to account for the uncertain nature of storm track prediction.

2.1 SCOOP Control Flow

Site A

Application

Coordinator

…

1

5

3
4a

8

Site C

Site B

[Wind

data

arrives]

7

6
[Output

files

are

pushed

out]

[What is the

best

resource?]

[Query site

status using

MDS for free

CPUs and

NWS for

bandwidth]

[Prepare the

package for the

resource]

2

[Retrieve or

create model

initialization

files]

[Move the

package,

initiate the run]

[Job finished,

Move output

files back]

Resource

Selection

4b [Optionally, query

database for jobs within

the MDS hysteresis

interval]

Figure 1. Resource Selection Interactions

Figure 1 summarizes the resource selection interactions
within our system. A more complete description of the
system is provided in [20]. When a forcing wind field
arrives over an event-driven data distribution network us-
ing Unidata’s Local Data Manager (Step 1), the “Applica-
tion Coordinator” (AC) is invoked with a new job for this
ensemble member. The application coordinator shepherds
the job’s flow across the grid. The AC publishes progress
and status messages to a message broker using the WS-
Messenger system[12]. The AC then retrieves all the re-
quired application files for the model execution from both
local storage and remote archives (Step 2). Next the AC

2

uses the resource selection protocol to select a resource on
which to execute this model run (Steps 3,4a,4b). It then pre-
pares a self-extracting package that includes the binary and
the input files for the model run customized for the selected
resource (Step 5). The self-extracting package is sent to the
batch queue system of the selected resource (Step 6). The
delay between the resource selection and the actual submis-
sion can be substantial due to the need to copy binaries and
process the input data. There is an additional delay between
job submission and the start of execution. Another delay is
added due to the the frequency at which the resource moni-
toring components such as MDS update their data. The se-
lected resource monitors the status of the job and publishes
messages both when the job begins execution and when the
job has completed. Finally, after job completion the out-
put files are retrieved and other clean-up operations are per-
formed (Steps 7 and 8).

Within this control flow, the MDS data doesn’t include
the effect of the new job from the time resource selection is
made until the job is actually initiated on the target. This
is the time during which inappropriate resource selections
may be made using our original, naive selection protocol.
Our enhanced, “stateful” protocol queries a database for
jobs that might be in preparation but not submitted (step
4b) to reduce the hysteresis effects on the resource selec-
tion. More details are provided in Section 3.

2.2 Resource Selection Requirements

Initially, SCOOP used an ensemble set of five differ-
ent tracks. More recently, ensembles are approximately 33
tracks. Each of these runs, using the current finite element
grid which represents the North Atlantic Basin, requires be-
tween 8 and 32 CPUs. Thus, with the increase in the number
of ensemble members resource selection has become more
critical in our system.

Using our first, stateless resource selection method, there
was a strong tendency for all of the jobs of the ensemble
to be sent to a small number of resources, whether or not
those resources had sufficient available capacity to run the
jobs simultaneously. In the worst case, all the runs would
be dispatched to a single resource. This resulted in the en-
semble being executed sequentially rather than in parallel.
Going to the stateful resource selector greatly improves the
timeliness of results.

3 Resource Selection Protocols

As previously mentioned, we first implemented a state-
less resource selection protocol that uses the real-time status
of the resources to make resource choices. This protocol is
fairly common and used by many other application man-
agers as well. We present this protocol in section 3.1, and

the stateful enhancement in section 3.2.

3.1 Stateless Resource Selection Protocol

In our stateless, or naive, protocol, the application co-
ordinator uses the Java CoG kit[24] to retrieve from MDS
an estimate of the number of free CPUs on each resource.
An estimated execution time is derived by fitting the num-
ber of free CPUs into an open source Rodbard curve fit-
ting library[3, 7], along with the estimated complexity of
the simulation (i.e. number of time steps in the job, fi-
nite element mesh of the simulation). Differing capabili-
ties and speeds of the cluster resources are factored in us-
ing an empirically-determined “slowness” factor. The ap-
plication coordinator also uses an NWS interface to obtain
an estimate of network bandwidth between the machine on
which the application coordinator is running and the re-
source. This number is used to estimate the total number
of seconds it will take for uploading the job and later down-
loading the results. The protocol then uses the minimum
completion time, including data transfers, of the job across
resources as the metric for resource selection.

3.2 Stateful Resource Selection Protocol

The stateful version of the protocol extends the naive ver-
sion by adjusting the reported MDS data to discount the re-
ported idle nodes that the resource selector anticipated will
be used by the jobs it has recently sent to each resource.
This is information about the future that is inaccessible to
MDS. As noted in Section 2, our system logs the progress
of job execution through an event reporting system. The re-
source selection protocol queries the database for all model
runs that have currently selected a resource but have not
yet been reported as running on the resource and uses those
results to update the MDS provided CPU count. Protocol 1
shows high-level pseudocode for the resource selection pro-
cess.

In the SCOOP application, jobs arrive sequentially and
in bursts. The lag between resource selection and the time
that MDS reflects that selection is not short in relation to the
frequency at which jobs arrive. Measurements indicate that
the average time between resource selection and notification
through the CoG listener mechanism that the job has been
queued or is running is approximately 1.5 to 2.5 minutes.
This is primarily the time it takes the system to select a re-
source, create the package to be uploaded and then upload
the package using GridFTP. These numbers are still fairly
optimistic since MDS will not instantly see the job running.
By default MDS is set up to collect data every sixty seconds.
On average this adds another half minute to the interval in
which MDS data is out of date. Often sites will increase
the intervals due to fear of the monitoring overheads over-

3

foreach site do
Query MDS for free CPU count
if using the stateful protocol then

Query database for runs sent to this site that
aren’t yet reported by MDS
Decrement site’s free CPU count appropriately

endif
Query NWS for estimated bandwidth
Estimate total time on this resource, based on 1)
number of time steps in job, 2) finite element mesh of
the simulation, 3) free CPU count, 4) resource slow-
ness factor, and 5) bandwidth estimates
if this site is the fastest found so far then

This site becomes the current best site

endif
endforeach
if the best site has enough CPUs to run the job then

Return the best site.

endif
else

Return a randomly chosen site.

endif

Protocol 1. Live Grid Resource Selection

whelming the systems. This means that the MDS data we
are using as an input to our protocol is actually out of date
for approximately 2 to 3 minutes for each run of the appli-
cation coordinator. In the live grid test runs we used for this
paper, the job arrival rate in an ensemble averaged approxi-
mately one every 20 seconds.

There are several phenomena that might limit the accu-
racy of our stateful heuristic. There is no guarantee that by
the time this model run begins to execute that any of the runs
that we account for are still executing. Those runs could
be quite short or they could fail. There may be competing
jobs from outside the SCOOP application, or even compet-
ing SCOOP applications. These other jobs may start, fail,
or finish during the hysteresis interval. We show in sec-
tion 4 that the stateful protocol improves resource selection
choices in these circumstances.

4 Evaluation

To evaluate the effect of using stateful resource selec-
tion, we performed live experiments over a regional grid
and we used simulations using a system emulator. First,
we used our live experiments to confirm the behavior of the
enhanced protocol in a working grid. We used the simula-
tions to compare several resource selection protocols to es-
timate the impact on response times and utilization. We also

used the simulations with several assumptions about exter-
nal loads to estimate the performance of the protocol in the
presence of interference and to estimate its effect on other
users of the system. These experiments support arguments
in favor of implementing a grid-wide resource selection in-
terface.

Test data: Our test bench is an ensemble of ten driving
wind fields from tropical storm Alberto (June, 2006). Our
live grid test methodology was as follows: cron jobs were
set up to run at four and five minutes past the hour for 12
hours (a total of 240 jobs). Each cron job submitted 10
different ensemble members across the four clusters listed
in Table 1, with a 30 second delay between each individual
member’s submission. This is similar to the bursty arrival
pattern of the SCOOP application. Resource selection was
done using the stateful protocol. Metrics recorded for each
run included: resource pool ranking; available CPUs per
resource reported by MDS; the available CPUs as estimated
by the stateful protocol; selected resource; estimated and
actual values for upload and download time, data transfer
sizes and times, computation times, total turnaround time
for the job, etc.

Grid Setup: The set of resources in our test bench is
shown in Table 1. While our protocol has knowledge of its
prior activities, it has no awareness of previously or about-
to-be submitted jobs from other users. We study the effect
of this in a controlled environment in our emulation. How-
ever in a real grid setting this affects our results and this
might require further research to fully understand the im-
pact.

Table 1. Test Bench Resources
Resource Name Number of CPUs

canbc01.louisiana.edu 6
ci-team.acis.ufl.edu 4
mileva.hpc.odu.edu 16
scoops.itsc.uah.edu 8

Emulator setup: In order to compare protocols in a con-
trolled environment with reproducible external loads, we
simulated the system using a Maui-based grid emulator de-
veloped by Ramakrishnan et. al.[21]. This allows us to
compare various stateless and stateful protocols under the
same external conditions. Because we capture job and clus-
ter state data on the live system, we can reconstruct the job
flow with enough precision to allow a reasonable emulation.
The modeling process also allows us to vary aspects of the
selection protocol and observe the results in an efficient and
controlled fashion.

The inputs to the simulator are summarized in Table 2.
Most of these are self explanatory. The resource selection
mode option controls whether the application simulates the
naive or stateful protocol. There is also a mode that makes

4

random selections among the available resources. The in-
sufficient resource mode option controls behavior when the
estimate is that no site has enough idle CPUs to run the job.
If this mode is set to ”random”, the protocol randomly se-
lects a resource; if this mode is set to ”best”, the protocol
selects the resource with the largest number of idle CPUs,
even if that number is “negative” because multiple jobs have
been dispatched to it. We also evaluated the impact of us-
ing our protocol with multiple competing job streams. The
“system” option creates multiple job streams. Positive inte-
gers designate multiple instances of the protocol and a neg-
ative system number denotes an external load.

Table 2. Simulator Inputs
Type Datum Value

Job

Arrival Time Time Job Arrived
RunTime Execution Time
Hysteresis Hysteresis Time
CPU Count Number of CPUS Used
System System for the Job Run

Site
Site Name Name of the Site
CPU Count CPUs on the Site
Site Speed Site ”Slowness” Factor

Modes Res. Selection Naive, Stateful or Random
Insufficient Res. Random or Best

Emulation Protocol: The grid emulator models a set of
clusters of differing sizes and speeds. The emulator runs
in a discrete time mode in which a virtual clock is explicitly
advanced at one second intervals until all submitted jobs are
completed.

Protocol 2 shows the emulation of the stateful resource
selection procedure. This is similar to Protocol 1, with sub-
tle differences to account for the emulation environment.
The emulated naive resource selection protocol differs in
two significant ways: it makes no attempt to account for
any hysteresis; and in the case where no resource with suf-
ficient CPUs is found, it selects a resource randomly.

4.1 Impact of Enhanced Protocol

In our first experiment, we ran the enhanced protocol in
a live grid setting to gauge its impact. In 154 of the 240
runs (64.2%), the selected resource was either changed due
to the knowledge of prior submitted jobs available from the
MySQL database (11 runs), or was chosen at random from
among all the resources. In these 143 cases all resources
were deemed full per the combination of MDS queries mod-
ified by the local state.

When all queues in the resource pool are non-empty, it
is not possible for our protocol to reasonably estimate the
total time a job might spend on its chosen resource; the Ap-

foreach site do
Query grid simulator for the free CPU count

foreach job that selected this site but is not yet run-
ning do

Decrease site’s CPU count by the CPU count for
the job. // This simulates the hysteresis compen-
sation of the stateful protocol.

endforeach
foreach job currently running on the site do

if the current time is greater than job start time
+ MDS delay interval then

Increment the site CPU count by the CPU
count for the job. // This compensates for the
fact that the simulator has no MDS reporting
delay.

endif
endforeach
Use the relative resource speed to calculate the effec-
tive CPU count for the site
if this site is the fastest found so far then

This site becomes the current best site

endif
endforeach
if the best site has enough CPUs to run the job then

Return the best site.

endif
else

Depending on configuration, return either the best
site or a randomly chosen site.

endif

Protocol 2. Emulated Stateful Resource
Selection

plication Coordinator has no knowledge of what other jobs
may be in the system and how long they might take.

4.2 Comparison of Protocols

We conducted several experiments using the emulator.
Each experiment uses a job trace we captured during the
live grid results. The results of these experiments are sum-
marized in Figures 2 and 3. For protocols with a random
component, these are the mean values over twenty runs.

Figure 2 summarizes the results of our first experiment.
We simulated the performance of scheduling the canonical
job trace with three different protocols. The protocols are
the naive protocol, and two versions of the stateful protocol.
If no site has sufficient free CPUs, one variant uses random
resource selection and the other uses the “best” strategy, as

5

described above.
We ran additional experiments to investigate the effect

of multiple competing job streams. If one subset of users
adopts a strategy that improves the response for their job
stream, does this adversely impact other users? In particu-
lar, what is the effect of running two groups of jobs, each us-
ing the stateful policy, as opposed to a single larger group?
We therefore did emulations in which the canonical job flow
is split into two parts and these two flows are managed in-
dependently using the stateful protocol (using the best re-
source configuration) on the same resource set.

The metrics reported are total time queued for all jobs,
total compute time, and the time at which the last job com-
pletes. Figure 2 also includes the mean time in queue as
well as the mean compute time. The performance of the
naive selection protocol, measured by ensemble time to
completion, is indeed worse than either of the stateful pro-
tocols. This confirms both intuition and the real world ob-
servations that led us to this work. The total running time
metric is similar across all cases since the the performance
characteristics of the emulated resources have little varia-
tion.

Note in Figure 2 that the queueing and completion met-
rics of the first run of two independent stateful streams are
close to those of the unified stateful protocols. Further in-
vestigation revealed that the canonical job stream had been
divided to assign the two longest running jobs to one of the
systems, so we created a more even partitioning and ran the
emulation again (i.e. Run 2). The fact that slight changes
in the input partitioning results in such different results con-
firms the expectation that that multiple independent stateful
systems will not be as effective as a single unified system.

4.3 Impact of External Load on the Pro-
tocols

Figure 3 summarizes the behavior of the naive and state-
ful protocols in response to increasing levels of external
load. External jobs are assigned statically to the cluster re-
sources. The effect is to reduce the number of free nodes
seen by the resource selectors and to disrupt the accuracy of
the stateful predictor.

External load is added in four discrete levels, represented
by the X axis on Figure 3. In level one two small jobs are
started on one of the clusters at the beginning. At level
four each of the clusters is fully subscribed by external load
throughout the the majority of the resource selection period
of the canonical job trace. The total run time of the external
jobs increase from 400 seconds at level one to 3400 seconds
at level four.

The metric we use in this experiment is the initial la-
tency time for all resources scheduled by our protocol. This
measures the effectiveness of the resource allocator at iden-

tifying and using idle resources. On each resource, this
measures the “lost capacity” in the form of the integral of
unused “job slots” from the start of simulation until the re-
source is running at maximum capacity. Figure 3 illustrate
three qualitative observations. First, the stateful “best” pro-
tocol dominates the naive protocol. Also, as we add external
load to the system, the metric decreases because the exter-
nal jobs are already running. Lastly, the performance of the
two stateful protocols converge as external load increases,
but the naive protocol continues to perform poorly. The fact
that, even under substantial externally generated load, the
stateful protocols outperform the naive protocol is a strong
argument for its use in a grid-level resource selection inter-
face.

Total Queue Total Run Complete Mean Queue Mean Run0

2

4

6

8

10

12

14

Metric

Se
co

nd
s

(T
ho

us
an

ds
)

Naive
Stateful Best
Stateful Random
Stateful 2 System Run 1
Stateful 2 System Run 2

Figure 2. Summary for Multiple Runs

0 1 2 3 4
4

6

8

10

12

14

16

Load Level

In
ita

l L
at

en
cy

Se
co

nd
s

(H
un

dr
ed

s)

Naive
Stateful Best
Random

Figure 3. Initial Latency Until System Satura-
tion, Under Increasing External Load

6

5 Related Work

Today’s grid resource management tools provide mech-
anisms to discover and select resource services in sup-
port of grid applications’ Quality of Service (QoS) require-
ments. More recently there has been work on applying
offline methods to optimize resource selection for a Di-
rected Acyclic Graphs (DAGs). However, offline meth-
ods are appropriate for single applications and/or multi-step
workflows. While batch queue systems like PBS, Maui,
Condor[17] focus on the problem of optimizing a set of
jobs that are already in a centralized queue, the policies are
resource-provider centric and intended for use at a single
site. In contrast, our approach addresses online resource se-
lection for a stream of loosely-connected jobs over multiple
sites

The Network Weather Service’s batch queue prediction
service (QBETS)[6] offers queue delay predictions for in-
dividual jobs. Compute resources can be added to the
QBETS service wherever the site allows one to inspect the
local queuing system’s batch queue prediction log files, then
queue delay predictions can be made using similar mecha-
nisms as the NWS network predictions.

There are a variety of resource management systems[19]
providing application scheduling and adaptation on grid
systems. Monitoring tools are used to evaluate system and
application performance and to aid in scheduling and/or
rescheduling decisions. AppLeS provides a framework for
adaptive scheduling on the grid through distinct steps for re-
source discovery and selection, schedule generation and se-
lection, application execution and schedule adaptation. Var-
ious site selection policies and meta-schedulers such as Grid
Service Broker, GridWay, Nimrod/G, etc.[5, 10, 22, 23] are
being explored in the context of the grid. These provide
interfaces for submitting jobs to multiple sites using infor-
mation collected using standard monitoring tools.

Heuristic techniques are often used to qualitatively se-
lect and map resources to available resource pools. Man-
dal et. al.[18] propose a heuristic strategy using perfor-
mance model based in-advance scheduling for optimal load-
balancing on grid resources using the GrADS[16] infras-
tructure. Blythe et. al.[9] identify and evaluate two re-
source allocation strategies for workflows: task-based and
workflow-based. While these are good strategies for op-
timizing data-dependent application steps, they do not ad-
dress the online case.

The GrADS workflow scheduler[8] uses a performance-
model based workflow scheduling, rescheduling by stop-
restart and rescheduling by process swapping. The Vir-
tual Grid Execution System (vgES)[14] provides an in-
tegrated resource selection and binding approach to re-
source allocation allowing higher tolerance to lower re-
source availability[15].

While there is a need for such resource selection and
mapping techniques to aid scheduling at the batch queue
level and at the workflow level to optimize multiple appli-
cations, these methods do not address the online case of
loosely connected jobs. None of these will completely solve
the problem we are addressing, which is what to do when
multiple jobs arrive in a short interval of time - something
that will happen in many systems. That is the need we have
addressed in this paper.

6 Conclusions

Job response time and efficient resource utilization are
crucial goals for effective grid enabled software infrastruc-
ture. In this paper we described and evaluated an enhanced
resource selection protocol that minimizes the problems
caused by rapid, online arrival of jobs combined with de-
lays between resource allocation decisions and when their
effects appear in systemwide monitoring data. Driven by
the requirements of the SCOOP application we developed
a stateful resource selection protocol to address these prob-
lems. Our evaluation shows that the stateful protocol dom-
inates the stateless resource selection approach that is used
in today’s grid deployments.

Our approach improves the response time of the system
and also addresses utilization and throughput. Although it
still works well in the presence of competing and exter-
nal workload streams, our experimental results indicate that
the best place for this stateful protocol would be within a
globally-aware resource selection and submission interface.
There has been recent work on grid-level service infrastruc-
ture such as meta schedulers that provide multi-site schedul-
ing capabilities. Our protocol can be easily implemented in
one or more of these grid-level services.

7 Acknowledgments

This study was carried out as a component of the “SURA
Coastal Ocean Observing and Prediction (SCOOP) Pro-
gram”, an initiative of the Southeastern Universities Re-
search Association (SURA). Funding support for SCOOP
has been provided by the Office of Naval Research, Award
N00014-04-1-0721 and by the National Oceanic and At-
mospheric Administration’s NOAA Ocean Service, Award
NA04NOS4730254.

We would also like to thank the various SCOOP part-
ners listed at http://scoop.sura.org/partners.html, as well
as various member institutions of the SuraGrid listed at
http://www.sura.org/programs/sura grid.html who provided
compute resources for this study.

7

References

[1] ADCIRC website. http://www.adcirc.org.
[2] Globus toolkit 4.0: Information services.

http://www.globus.org/toolkit/docs/4.0/info.
[3] Imagej website. http://www.rsb.info.nih.gov/ij.
[4] SCOOP website. http://scoop.sura.org.
[5] Coordinated harnessing of the irisgrid and egee testbeds

with gridway. Journal of Parallel and Distributed Comput-
ing, 66(5):763–771, May 2006.

[6] Network weather service: Batch queue prediction.
http://nws.cs.ucsb.edu/ewiki/nws.php, 2007.

[7] M. Abramoff, P. Magelhaes, and S. Ram. Image process-
ing with imagej. Biophotonics International, 11(7):36–42,
2004.

[8] F. Berman, H. Casanova, A. Chien, K. Cooper, H. Dail,
A. Dasgupta, W. Deng, J. Dongarra, L. Johnsson,
K. Kennedy, C. Koelbel, B. Liu, X. Liu, A. Mandal,
G. Marin, M. Mazina, J. Mellor-Crummey, C. Mendes,
A. Olugbile, M. Patel, D. Reed, Z. Shi, O. Sievert, H. Xia,
and A. YarKhan. New grid scheduling and rescheduling
methods in the grads project. International Journal of Par-
allel Programming (IJPP), Volume 33(2-3):pp. 209–229,
2005.

[9] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal,
and K. Kennedy. Task scheduling strategies for workflow-
based applications in grids. In CCGRID, pages 759–767,
2005.

[10] R. Buyya, D. Abramson, and J. Giddy. Nimrod/g: An ar-
chitecture of a resource management and scheduling sys-
tem in a global computational grid. In Proceedings of
4th International Conference on High Performance Com-
puting in ASIA-Pacific Region, IEEE Computer Press,
cs.DC/0009021, 2000.

[11] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. The International Journal of Super-
computer Applications and High Performance Computing,
11(2):115–128, Summer 1997.

[12] Y. Huang, A. Slominski, C. Herath, and D. Gannon. Ws-
messenger: A web services-based messaging system for
service-orient ed grid computing. In CCGRID ’06: Proceed-
ings of the Sixth IEEE International Symposium on Clus-
ter Computing and the Grid (CCGRID’06), pages 166–173,
Washington, DC, USA, 2006. IEEE Computer Society.

[13] M. A. Jette. Performance characteristics of gang schedul-
ing in multiprogrammed environments. In In Proceedings of
the ACM/IEEE Supercomputing 1997 Conference (SC’97),
1997.

[14] Y.-S. Kee, D. Logothetis, R. Huang, H. Casanova, and
A. Chien. Efficient resource description and high quality se-
lection for virtual grids. In Proceedings of the 5th IEEE Sym-
posium on Cluster Computing and the Grid (CCGrid’05),
Cardiff, U.K. IEEE, 2005.

[15] Y.-S. Kee, K. Yocum, A. A. Chien, H. Casanova, and
H. Casanova. Improving grid resource allocation via inte-
grated selection and binding. In International Conference
on High Performance Computing, Network, Storage, 2006.

[16] K. Kennedy, M. Mazina, J. Mellor-Crummey, K. Cooper,
L. Torczon, F. Berman, A. Chien, H. Dail, O. Sievert, D. An-
gulo, I. Foster, D. Gannon, L. Johnsson, C. Kesselman,
R. Aydt, D. Reed, J. Dongarra, S. Vadhiyar, and R. Wol-
ski. Toward a framework for preparing and executing adap-
tive grid programs. In Proceedings of NSF Next Generation
Systems Program Workshop (International Parallel and Dis-
tributed Processing Symposium 2002), Fort Lauderdale, FL,
April 2002.

[17] M. Litzkow and M. Livny. Experience with the Condor dis-
tributed batch system. In Proceedings of the IEEE Workshop
on Experimental Distributed Systems, Huntsville, AL, Octo-
ber 1990.

[18] A. Mandal, K. Kennedy, C. Koelbel, G. Marin, J. Mellor-
Crummey, B. Liu, and L. Johnsson. Scheduling strategies
for mapping application workflows onto the grid. In High
Performance Distributed Computing (HPDC 2005)., pages
125–134. IEEE Computer Society Press, 2005.

[19] J. W. E. Nabrzyski, J.M. Schopf. Grid Resource Manage-
ment. Kluwer Publishing, 2003.

[20] L. Ramakrishnan, B. O. Blanton, H. M. Lander, R. A. Luet-
tich, Jr, D. A. Reed, and S. R. Thorpe. Real-time Storm
Surge Ensemble Modeling in a Grid Environment. In Sec-
ond International Workshop on Grid Computing Environ-
ments (GCE), Held in conjunction ACM/IEEE Conference
for High Performance Computing, Networking, Storage and
Analysis, November 2006.

[21] L. Ramakrishnan, L. Grit, A. Iamnitchi, D. Irwin,
A. Yumerefendi, and J. Chase. Toward a Doctrine of Con-
tainment: Grid Hosting with Adaptive Resource Control. In
Proceedings of the ACM/IEEE SC2006 Conference on High
Performance Computing, Networking, Storage and Analysis,
Tampa, Florida, November 2006.

[22] S. Vadhiyar and J. Dongarra. A metascheduler for the
grid. In Proceedings of the 11th IEEE Symposium on High-
Performance Distributed Computing, July 2002.

[23] S. Venugopal, R. Buyya, and L. Winton. A grid service
broker for scheduling e-science applications on global data
grids: Research articles. Concurr. Comput. : Pract. Exper.,
18(6):685–699, 2006.

[24] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java
commodity grid kit. Concurrency and Computation: Prac-
tice and Experience, 13(8–9):645–662, /2001.

[25] R. Wolski, N. T. Spring, and J. Hayes. The network weather
service: a distributed resource performance forecasting ser-
vice for metacomputing. Future Generation Computer Sys-
tems, 15(5–6):757–768, 1999.

8

	tr0802
	SCOOPResourceSelection.pdf

