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Abstract— We report our experiences with using high-
throughput techniques to run large sets of performance 
experiments on collections of grid accessible parallel computer 
systems for the purpose of deploying optimally compiled and 
configured scientific applications. In these environments, the set 
of variable parameters (compiler, link, and runtime flags; 
application and library options; partition size) can be very large, 
so running the performance ensembles is labor intensive, tedious, 
and prone to errors. Automating this process improves 
productivity, reduces barriers to deploying and maintaining 
multi-platform codes, and facilitates the tracking of application 
and system performance over time.  We describe the design and 
implementation of our system for running performance 
ensembles and we use two case studies as the basis for evaluating 
the long term potential for this approach. The architecture of a 
prototype benchmarking system is presented along with results 
on the efficacy of the workflow approach. 

I. INTRODUCTION

There are a wide variety of High Performance Computing 
(HPC) system architectures deployed today, from commodity 
clusters to special purpose machines.  In this environment, 
there are many ways of building, configuring, and running 
applications on each system.  In this complex environment, 
manually running extensive performance experiments is 
infeasible and attempts to automate the process using an ad 
hoc methods based on custom scripts fall short. We have 
therefore begun to use a workflow framework to manage our 
benchmarking and performance tuning experiments. We 
report here on our approach and our experiences.

Many large-scale scientific applications have now outlasted 
several generations of high-end system architectures. These 
are now used across the full spectrum of currently active 
hardware and software environments. These codes can have 
many, possibly conflicting, configuration options with choices 
of solver methods, external libraries, and alternative 
algorithms. These choices potentially result in significant 
differences in performance for each target system.  

Traditional benchmarking methods are not sufficient to 
handle the increasing complexity of rapidly evolving HPC
systems as evidenced by the growth in chip complexity. Chips 
have gone from single-CPU systems to multi-processors, then 
multi-core, and now heterogeneous many-core systems that 
include external accelerator units. This complexity is 
exacerbated by the use of deep memory hierarchies and the 
mix of distributed and shared memory components resulting 
in performance receding further behind the memory wall. Yet, 
even these are not the final complications as growing 
hardware complexity is mirrored by the rapid growth in 
software choices including compilers, compiler options, 

communications libraries and other run-time configuration 
options.  Finally, the rankings of these choices depend on the 
complexity and size of inputs as well as on system partition 
size. This proliferation of options is likely to increase in the 
future.

Thus, the overarching question becomes; given one or more 
large-scale HPC systems, what combination of these options 
should one select in the deployment of an application? Ideally, 
the analyst would test all the possible choices under 
conditions that mimic expected usage. Unfortunately, the 
number of combinations of these possible choices generally 
precludes manually performing such an analysis. Even taking 
a small-subset of likely important options can grow to a large 
number of trials. Thus the ability of the analyst to 
exhaustively, or even reasonably, optimize the deployment of 
the application or to state with confidence that the optimal 
choices have been made is difficult. 

A related concept addressable by this work is the ongoing 
maintenance of such codes through periodic performance 
assurance testing especially across multiple platforms. This is 
a vital and often even more time-consuming process than the 
initial deployment. 

In this paper, we report our explorations into techniques for 
improving the productivity of researchers responsible for the 
deployment and maintenance of multi-platform codes within a 
grid-services environment.  In particular, we describe methods 
for facilitating performance studies in an environment that 
involves many platforms and configuration alternatives. We 
evaluate the relative strengths and weaknesses of our 
experimental prototypes. 

II. PERFORMANCE CAMPAIGNS

A performance campaign is defined in this work as a set of 
experiments across (possibly) multiple platforms.  Each 
experiment is defined by a set of configuration options and 
test inputs. A campaign step runs an experiment by building a 
configuration on a system and then executing it on a specific 
input using a specified environment. For example, a parallel 
scaling study of an application on 64, 128, and 256 nodes, on 
three different clusters, and for two sets of compile or link 
parameters would require 18 separate campaign steps. Thus a 
campaign is such a set of campaign steps. This High 
ThroughPut (HTP) workflow automates the execution of the 
campaign. A highly simplified specification for a campaign 
step is shown in Table 1.

A. Base Cyberinfrastructure



Fig. 1 shows the structure of our performance workflow 
environment. The outer Workflow Layer enacts the 
performance workflow and serves as the user interface.
Campaign specifications are entered at this layer by choosing 

a particular workflow and the configuration option ranges for 
the campaign. The specified workflow assembles the
campaign from steps by enumerating combinations of
configuration options.  We use a standard workflow 
framework, so it is easy to create new workflows by adapting 
and extending existing ones. The case studies used here are 
adaptations of a base workflow to applications in Chemistry 
and in Storm Surge modelling. The Scientific Services Layer 
encapsulates the web and grid services that initiate the 
compilation, linking and running steps on (potentially) remote 
target systems. The Scientific Apps Layer consists of a set of 
scripts (Perl, Python, bash, etc.) installed on the remote
machine to connect the workflow services to the native 
build/run processes of the scientific application under study. 

Select outputs from all parts of each campaign step are 
committed to persistent storage by sending them to a 
relational database provided by the Database Layer. 

B. Workflow Technologies

Our system uses the Taverna Workbench [1] to define and 
instantiate workflows. We chose Taverna for this work 
because of the large number of included services and our 
substantial experience building Taverna-based workflows for 
biological applications.[2],[3] Though Taverna doesn’t 
directly support grid services, the Scientific Services Layer
provides mechanisms for using the standard Taverna system 
within a computational grid [4],[5] system. 

The Taverna Workbench integrates many software tools, 
including web services, and provides a desktop authoring 
environment and enactment engine based on a centralized 
scheduling model. In particular, Taverna uses a centralized 
control approach to enact non-directed acyclic graphs.[6] This 
is a powerful approach permitting extensive use of implicit 
iteration and basic failure recovery modes. 

C. Service technologies

The service technologies used to wrap, grid-enable, and 
invoke the scientific applications are implemented with the 
Generic Service Toolkit (GST).[7] GST is a Java-based 
system that enables a user to write a service that will invoke 
applications on a remote machine. GST provides a simple 
web-services (wsdl) interface compatible with Taverna; uses 
grid-services to manage data (file) movement between the 
remote computer and the application computer; and launches 
the application. GST uses the Java CoG interface [8] to 
Globus GT4.[9]

Using GST to create services provides two benefits. The 
first is the ability to exploit grid-connected resources without 
requiring the workflow user to deal explicitly with the grid.
Second, as a web service, it fits readily into the Taverna 
framework. Specifically, the workflow accesses the GST 
service using web services; the GST service in turn invokes a 
grid service that transfers data files to a remote grid-hosting 
computer using gridFTP and launches jobs via GRAM.

As an example we describe some specifics of the Chemistry 
workflow services (See Case Studies: GAMESS). Three 
services are required for this workflow: Compile, Link, and 
Execute. In practice, each campaign step is stored to a 
uniquely named campaign step file. Thus, each service is 
designed to read a campaign step specification file and to act 
on it. 

1. The Compile Service decides which compiler and 
options to use in this step. It passes this information 
to the target system.

2. The Linker Service deals with the choice of which 
libraries to use at link time.  Typical options include 
choices of math, and tracing libraries. 

3. The Execute Service handles runtime choices such as 
specifying the launcher to use, the number of cores 
and nodes, and other command line options These 
may include selection of dynamically linked libraries 
such as the communication library to employ.

TABLE 1

REPRESENTATIVE NAME-VALUE PAIRS FOR A CAMPAIGN STEP

CC /opt/mpi/openmpi/intel/bin/
mpicc

FC /opt/mpi/openmpi/intel/bin/
mpif77

FFLAGS -O3 –xT –i8 –pg
NODES 8
CORESPERNODE 4
CAMPAIGNNAME GamessNetworkTest
LAUNCHER /opt/mpi/openmpi/gnu/bin/

mpirun --mca btl mvapi,self  
-verbose

TRACKNAME Standard
CODE Gamess

Fig. 1. Depiction of the layered structure of our performance campaign 
environment



These three services can be combined in different ways 
depending on target application. For example, the Compile 
and Link Services are combined in the Chemistry case study.

Most of these services are implemented as a script on the 
target system that accepts information from its associated 
service and passes it to the application’s mechanisms for 
building and executing. Build mechanisms have become 
extremely complex, and this approach reduces the need to 
modify the changes to the native build or run procedures of 
the application.

The process for “wrapping” one of these scripts is basically 
the same for all three services, thus we will illustrate this 
process by focusing on the Compile Service. We begin by 
selecting the server onto which the service will be run. Fig. 2
depicts the hardware environment. In this figure, the GST 
Services server is a large-memory Linux machine that runs all 
the GST services. It is a grid-hosting environment running 
GT4 and Java 1.5. First the GST software is installed onto the 
system. The associated bridging script (compall_workflow) 
interfaces with the GAMESS [10] native compile procedure (a 
slightly modified version of compall) and is installed on the 
remote system. 

We then create three GST description files. GST names 
these the HostDescription, ApplicationDescription, and 
ServiceMap files, respectively. These files together com-
pletely specify the service. The ServiceMap file is an 
application-specific configuration file which specifies the 
interface between the service and the application (e.g., 
compall_workflow). In the Compile Service this includes a 
single input port referring to the campaign step description file. 
The Compile Service takes this campaign step and delivers it 
via gridFTP to the remote machine.  After delivery, the remote 
script is invoked to read the “step” and pass the information to 
the native compall script. The ServiceMap also describes an 
output port that receives stdout and stderr streams returned to 
the workflow from the compilation process.

The ApplicationDescription file specifies the location of the 
application (compall_workflow) on the target system. The 
HostDescription file specifies how to launch jobs to the target 
system. For the GAMESS workflow, Compile and Link 
scripts are launched as “fork” jobs to the remote parallel 

system’s head-node via the GT4 jobmanager-fork launcher. 
For example, on one of our systems the Execute Service 
launches the GAMESS application as an MPI [11] job. 

The workflow coordinates with the GST service to define 
and create scratch directories and unique filenames for all 
input data. To reduce the number of redundant 
compilation/linking steps when the same executable can be 
used for multiple experiments, e.g., a scaling experiment using 
different partition sizes, the workflow reuses compilation and 
linking configurations when it can.

D. Storage of  results

The final step of the workflow is the archiving of results 
from the Compile, Link, and Execute steps into a relational 
database. Our experiments use MySQL. A simple schema was 
sufficient for these experiments, see Table 2. We are contem-
plating extensions and perhaps the adoption of a system such 
as PerfTrack.[12]

III. CASE STUDIES

To evaluate our strategy for automating performance 
campaigns, we undertook two case studies. These studies were 
intended to understand how much of a workflow can be 
reused between applications, to exercise a representative 
database schema, and to identify simplifications to the work-
flow system that facilitate the kinds of optimizations an 
analyst might ask of an application. The performance 
workflow system is intended to help answer questions 

Fig. 2. Hardware environment used by the performance workflows. 
Large-scale computations were performed on both a large Linux cluster 
computer and a large IBM Blue Gene/L (BGL)

TABLE 2

DATATYPES STORED FOR PERFORMANCE WORKFLOWS

MySQL name Description Example
CampaignName Name GamessNetworkingTe

st
CampaignDate Launch date of 

the campaign
Feb 20 2007

CampaignUser Workflow user Jtilson
Target CPU type X86_64
Machine Machine name Kittyhawk
Code application Gamess
ExtraDescription User selection Compare IB to gigE 

under hard scaling
Clang C compiler icc
Flang F compiler ifort
Libs Additional libs -lmass
Nodes Number of 

nodes
8

CoresPerNode Number cores 
per node

4

TotalCores Cores for run 32
RunCase Input file Exam01
Times walltimes List of times
DiskUsage disk space used List of sizes
ActualCores ActualTotal 

cores used by 
the app.

Not always the same 
as TotalCores

mpiTimes mpiTimes List of times
ioTimes I/O Times List of times



typically asked by users, developers, or management such as:
1. How well does the application scale for a fixed 

problem size? (hard scaling)
2. How well does the application scale for growing 

problem sizes? (weak scaling)
3. How well does the application scale on alternative 

interconnection networks and communication 
libraries?

4. What is the impact of choosing different libraries?
5. How many cores per node can be used at each scale?
6. How much overhead results from turning on 

profiling or message tracing?
7. How do compiler optimization choices impact 

scaling and performance?
8. What is the impact of using highly tuned cache 

optimizations?
Note that the expense of running experiments in the 

conventional way means that compiler, communications, and 
library combinations are rarely tested beyond the “obvious” or 
“historically good” choices.

The first case study addresses a problem in computational 
chemistry using the highly optimized GAMESS application. 
The second case study looks at a complicated system of 
several different applications that is important for large scale 
storm surge modelling.  

It is not the purpose of this paper to discuss either specific 
performance results or compare them to published results. 
Rather, we focus on evaluating the impact of using workflow 
techniques on the process for performing large-scale and HTP 
performance measurement. Thus the specific results should be 
considered as suggestive, unless otherwise indicated. 

For each case study we give representative results. We 
discuss observed difficulties in the adaptation of the workflow 
to the scientific application, and what database schema 
limitations, if any, were encountered. In the Conclusions we 
present plans for future deployments.

A. Case Study One: GAMESS

1)  Workflow and Campaign description

The first case study involves the General Atomic and 
Molecular Electronic Structure System [10], GAMESS, a 
general purpose ab initio quantum chemistry package with a 
long history of performance and parallel scalability upgrades.

Fig. 3 is a typical workflow graphic from Taverna which 
shows major workflow steps. The MySQL sub-workflow is in 
Fig. 4. In this case study, the Compile and Link Services are 
combined. For the purposes of illustration some shim- and 
I/O-related information has been removed. 

Each box in these Taverna images represents either a 
processor or an I/O port. The light brown boxes are Taverna 
local processors (shims, Java beanshell code) that run within 
the workflow on the driving system. These shims couple the 
workflow datatypes to the data requirements of a specific 
application. The “Gamess” and “CompileGamess” processors 
(colored Green) are the main steps of the workflows.

These representative performance campaigns are intended 
to answer two questions: How does GAMESS (hard) scale 
when using an Infiniband (IB) versus a Gigabit Ethernet (gigE) 
interconnection network? For a fixed number of processors, 
how do high levels of compiler optimizations compare?

In the following discussion, some GAMESS-specific 

A B

Fig. 3. Depictions of the Compile and Link Services as part of a combined “build” sub-workflow (A) and the Execution sub-workflow(B) for the GAMESS 
case study. The green colored Gamess and compileGamess boxes refer to the actual GST service calls to the Execute and Compile+Link steps, respectively. 
The remaining steps manage remote directory names, filenames, GAMESS output parsing and workflow timing. 



nomenclature is used. For the first campaign, we specify a 
single input (molecule) file for the GAMESS calculation. We 
choose the “standard.inp” input file supplied with the 
distribution. This input file performs a DFT(B3LYP) 
calculation using a 6-311G(d,p) basis set on the molecular 
system; O2SiCF2. Each campaign step was specified to 
compile the GAMESS using version 9.1 of the Intel compilers 
for Linux. Interprocessor communications was managed using
openMPI.[13] GAMESS was built using the “DDI over MPI” 
configuration. The compiler options were set to “-O3 -xT 
-i8” and basic linear algebra functionality was supplied by 
ATLAS [14], version 3.7.19. The parameters that were varied 
in the campaign include the number of nodes (8,16,32,64),
and the choice of interconnection network.  The number of 
cores per node is fixed at 4. Runtime selection of the network 
fabric and protocol was simplified by our concomitant 
selection of openMPI. The generality of our services, however, 
permits other approaches such as re-linking with alternative 
implementations of MPI. Specifically, as part of the campaign, 
the “launcher” (See Table 2) parameters values were: 

 mpirun --mca btl mvapi,self  (IB)
 mpirun --mca btl tcp,self --mca 

btl_tcp_if_include eth0 (gigE)
This creates 8 campaign steps.  The final energy for each 

step was recorded into the database and the other outputs are 
stored in the database for correctness checking.

2)  GAMESS Results

The scaling results are shown in Fig. 5. Not surprisingly, 
GAMESS scales less well using gigE than when using 
Infiniband (IB). Assuming ideal behaviour at 32 cores, the IB 
test indicates a parallel efficiency of 69.7% on 256 cores. The 
analogous gigE value becomes 45.8%. The fact that IB is a 
faster network and that GAMESS scales better on IB is not the 
point of these results. Rather, the HTP approach allows the 
researcher to look at this data and then ask follow-on 
questions such as ”How does scaling change with multiple 
kinds of compiler options?”,”How does scaling vary 
with/without using ATLAS?”,”How does scaling vary with 
different compilers?” Manually recording performance 
information is tedious, so automatically and consistently 
archiving results in a database for subsequent data mining is a 
large boost for productivity. 

B. Case Study Two: The North Carolina Floodplain Mapping 
Project (NCFMP).

The NCFMP partnership1 is developing a state-of-the-art 
system for the simulation of storm surge levels along the 
North Carolina coastal region waters for input into floodplain 
analysis systems as required by the Federal Emergency 
Management Agency (FEMA). The computationally 
expensive piece of this analysis is being executed on an IBM 
Blue Gene/L (BGL) machine, but can also effectively use 
large-scale clusters that have high performance interconnects. 
In this work we report BGL results.

Each simulation of the storm surge for a particular storm 
scenario is performed as a pipelined composition (dataflow) of 
wind, wave, and surge models. Storm scenarios involve 
synthetically-generated hurricanes, category types 3 through 5 

                                                
1

This is a multi-organizational effort involving the Renaissance Computing 
Institute (RENCI), the UNC-Chapel Hill Institute of Marine Sciences, the US 
Army Corps of Engineers,, Applied Research Associates, Coastal Risk 
Technologies, Dewberry, and the North Carolina Division of Emergency 
Management.

Fig. 4. Depiction of the sub-workflow used to populate the performance 
database (MySQL) for the GAMESS case study. The vertically aligned 
input ports are combined in the PreprocessDataForSQL shim and passed 
to the update service.

Fig. 5 GAMESS networking campaign. Total Time To Solution (TTS) as 
a function of the number of applied cluster cores. A comparison between 
using an Ethernet (gigE) versus an Infiniband (IB) interconnect.



for both land-falling and bypassing storms, as well as extra-
tropical storms. The four models that comprise the NCFMP 
system include a Hurricane Boundary Layer (HBL) model [15]
for wind and pressure, a basin-scale wave model for offshore 
waves, WaveWatch3 (WW3) [16],[17], a near shore wave 
model, SWAN [18],[19], and a state-of-the-art coastal 
circulation model ADCIRC [20] to compute the coastal 
inundation. The model components are coupled together 
through file exchange and the entire simulation process is 
scripted. 

1)  Computational Requirements

For each storm track (scenario), there is an HBL wind run, 
followed by a WW3 run and then four SWAN runs; two runs 
on coarse grids run concurrently, followed by two runs on fine 
grids which may also run concurrently. These are followed by 
two ADCIRC runs, one without forcing from the SWAN 
output and one with the forcing to help quantify the effect of 
waves on storm surge. By far, the most computationally 
expensive steps are the SWAN and ADCIRC runs. Our testing 
framework focuses on each of these components individually. 

The computational workload for the entire project is 
substantial. The first phase of the study required over 1.4 
million processor hours on the BGL system. The next phase of
analysis will be about one order of magnitude larger.  
Efficient execution is vital.

2)  Re-Purposing the Base Workflow

We adapted the base performance workflow to run the 
storm tracks for the NCFMP system on the BGL. This allows 
us to reuse much of the workflow infrastructure, such as the 
generically defined inputs and outputs, the construction of the 
campaign steps and the sub-workflows that produce the 
campaign step files and that store results into the relational 
database. The NCFMP workflow is shown in Fig. 6. This is 
similar to the workflow shown in Fig. 3(B). The primary 
difference is the green box at the heart of the workflow, here 
labelled NCFMP. This is where the NCFMP web service is 
invoked, rather than the GAMESS web service. Thus, we are 
required to write a new web service. This is not difficult and is 
done by creating GST description files, as described in the 
Service Technologies section. This wraps an application and 
uses Globus to launch jobs to the BGL. As in the GAMESS 
studies, GST wrapping requires specification of input and 
outputs to the application and the writing of a short script to 
run on the target system. This script is invoked by the web 
service.  It performs the campaign step compilation; submits 
the application to the batch queue; and passes parsed results
back to the workflow through the web service. The script 
interfaces with the production infrastructure developed for 
NCFMP. The various compile and linking options are passed 
cleanly into the respective source trees for SWAN and 
ADCIRC without modifying the original code. Thus, the 
workflow is minimally intrusive and the abstractions for the 
generic design proved successful.

3)  Performance Results

Several performance campaigns were enacted for both 
SWAN and ADCIRC to quantify their performance and 
scaling attributes, as well as to illustrate the use of HTP 
techniques to answer some of the questions posed at the 
beginning of Case Studies. These campaigns involved running 
a short test storm track that modelled 5.5 hours around 
landfall of the 1996 hurricane Fran that struck the North 
Carolina coast. Each individual campaign step was a 
particular combination of compiler options, link options, 
processor counts, and distribution across nodes for either 
SWAN or ADCIRC.

3.1) SWAN Results

MASS libraries: The use of the Mathematical Acceleration 
Subsystem (MASS) library routines are thought to improve 
performance [21] on the BGL system for frequently used math 
intrinsic functions such as sqrt or exp.  We performed a 
campaign to determine whether using MASS would improve 
overall code performance and if so, by how much. In 
combination with other choices of compiler options, these 
experiments produced many runs that differ only in selection
of the MASS library. Side-by-side comparisons using this set 
show that, indeed, using MASS did always improve 
performance. For SWAN on 100 and 150 processors the 
improvement varied from 4-18% with one exception. For 
SWAN on 16 processors, where the time spent on MPI and 
I/O is proportionally less important (and are unaffected by the 
use of MASS libraries) we find that the results split into two 
categories. Either there was a no statistically significant
benefit, 1-3% for codes with optimization levels of O5 (and 
one with O3 qhot) or there was a significant benefit (11-
16%) for all other combinations.  This contradicts the Blue 
Gene Compiler Guide [21] which indicates that the MASS 
libraries will be automatically enabled for optimization levels 
O5, O4, and O3 qhot. Our findings agree with this for the O5

Fig. 6 Depiction of the primary NCFML sub-workflow. The storage sub-
workflow is that same as that in Fig. 4 and is not pictured here. The green 
colored NCFMP box refers to the GST service call.



and O3 qhot settings but we consistently observed a 
significant performance boost using O4 with the MASS 
libraries over O4 without the explicit 
specification. This was observed on both inner 
grids and for all of the processor counts. This may be related 
to the use of the sqrt function in the SWAN code. Without 
automation, it is doubtful that we could have done the full set 
of runs.

Cache Optimizations: The IBM blrts compiler family 
allows the selection of the qcache option with very specific 
cache optimizations that can be tuned to the PowerPC 
architecture on the BGL. As with the MASS campaign, we 
compared results for many compiler and processor 
configurations with and without this option specified. Overall, 
no systematic benefit of using this optimization was found 
with generally little or no effect observed. 

Compiler Optimizations:  For the time consuming inner 
grid runs of SWAN, we examined combinations of the base 
optimizations O3, qnoautoconfig O4, qnoautoconfig
O5 with the additional optimizations of qnounwind, 

qunroll=yes, qarch=400, qarch=400d qtune=440, 
qbgl qhot (used qipa for O3) on 16 and 128 processors. 
The qarch=440 flag was the only one that consistently 
showed significant performance improvements albeit with one 
exception. The qarch flag only with the O4 optimization 
only on one of the inner grids inexplicably did much worse 
then any other setting. Over all cases the “-O5 –
qnoautoconfig –qarch=440” was the fastest setting 
for both grids and processor counts.

Scaling:  Fig. 7 shows the results of a hard scaling study for 
the SWAN code using the inner (finer) grid. As can be seen, 

the application does not scale to large numbers of processors 
and this is reflected in both the efficiency plot (scaled to the 4 
core results) and the fraction of run time spent in MPI calls, as 
reported by mpiP [22]. These are the results for the short, 
hurricane Fran test track but they are representative of the 
longer runs as the tracks will get longer in time but will run on 
the same grid. The plots show that MPI time grows steadily 
out to 200 cores and that the efficiency of the code is less than 
50% at 100 cores.  The conclusion from this study is that it is 
more productive to run several storm tracks concurrently on 
smaller system partitions, than to use large partitions to speed 
up individual runs.

3.2) ADCIRC Results

MASS Libraries: For ADCIRC, running on 128 processors 
and using various optimization flags combined with O3, O4, 
and O5, we saw an additional 3-7% improvement when using 
the MASS libraries versus the identical run without MASS.
As noted in the SWAN results section, this is somewhat at 
odds with the Blue Gene compiler documentation.

Compiler Optimizations: We performed several campaigns 
to evaluate compiler flags.  These generated nearly 90 
ADCIRC runs on 128 processors. The variation in time from 
fastest to slowest for the 1996 Fran test track was 40%.  We 
concluded that a minimum level of O3 was required to give 
good performance. The O4 and O5 flags yielded further 
improvements. For the blrts compiler, these levels augment 
O3 with some specific additional optimizations. To clarify 
the effects, we examined optimization levels of O3 with the 
MASS libraries and then with selected additional 
optimizations. We summarize our results as follows. The 
qarch=440 was better than qarch=440d across various 
optimization levels. The code was not sensitive to some 

particular combination of compiler options; rather we 
observed a clustering of campaign steps that showed similar 
performance (within 3% of the best time). The qhot flag 

Fig. 7. SWAN (hard) scaling on the RENCI IBM BG/L system. Red 
circles indicate the fraction of total run time spent in MPI library calls. 
Green squares are the parallel efficiency relative to the 4 processor run.

Fig. 8 ADCIRC hard scaling results from the RENCI IBM BGL system. 
Compared are using virtual node (vn) versus coprocessor (co) modes. 
Ideal scaling shown as a solid black line.



optimization seemed to improve performance with 
qhot=vector or qhot=simd being the best, followed 
closely by qhot=level=1. Curiously, further increasing 

this, using qhot=level=2 degraded the performance for 
this code. It was hard to see any consistent benefit when using 
qbgl, qessl, qnounwind and using qunroll=yes only 
resulted in slower runs. Using the inter-procedural analysis, 
qipa, with various levels also failed to provide any boost in 
performance. To summarize, using the MASS libraries with “-
O3 -qnoautoconfig -qarch=440 -qtune=440 -
qhot=vector” seems to be a good combination. Without 
automation, this search would have been too labor-intensive to 
have performed.

Scaling: Fig. 8 shows ADCIRC (hard) scaling on the BGL 
system. The plot shows results for running the code in both 
available modes, namely coprocessor mode (co) and virtual 
node (vn) mode. For this application, no benefit from running 
in coprocessor mode was observed. ADCIRC exhibits good 
scaling up to around 100 processors and beneficial scaling to 
500 or so processors with level O3 optimization. Fig. 9 shows 
the percentage of MPI time spent running in vn mode as 
reported from profiling with the MPI trace library [23] 
available on the BGL system. In contrast to SWAN, the ratio 
of MPI time to computation grows modestly in runs up to 800 
processors. This is reflected in the nice scaling exhibited in 
Fig. 8.

IV. EVALUATION

Adaptation of the base workflow and services to GAMESS 
was not difficult. The workflow itself required additional
shims to interface GAMESS output files to the workflow and 
to fetch relevant information (times, energies) for the database. 
Two GST services that were written for performing the 
Compile + Link, and Execute steps were constructed from 
base services. Thus, once access to the remote machines is 
granted, deployment of the service is fairly straightforward. It 
was necessary to have login access to the remote machines to 
debug services, and understand developmental issues that 
arise while adapting the base workflows. 

A few problems occurred when adapting the system to 
GAMESS. The first was an insufficient schema for the 
MySQL database. This observation will likely be true for 
several new applications during our prototyping period of 
work. The second problem pertains to the inability to 
disconnect/reconnect to the workflow in Taverna. A newer 
version of Taverna (1.7) supplies techniques for doing this.
Other issues include the occasional failure to update the 
database. For the GAMESS “standard.inp” file, the run times 
are sufficiently long that for even a modest sized campaign 
(64 or fewer steps, several days runtime), the chances of a 
system failure somewhere in the grid environment is high. A 
failure results in complete loss of all data for the campaign. So 
for now, it is important for campaigns to be quite focused by 
varying only a few options at a time.   In the future, we will 
incorporate methods for robustly restarting workflows and 
campaigns.[24]

A major benefit of automating performance experiments as 
described in this work is that it makes regression testing more 
economical.  For example, a new and improved grid (a two 
dimensional irregular finite element mesh) will be available 
soon for ADCIRC. This grid is nominally 25% larger than the 
current grid and will resolve more features along the North 
Carolina coast. Repeating our extensive suite of past 
performance experiments for the new configuration will be 
doable with minimal commitment of labor. Using the 
framework described in this paper that is simply a matter of 
reloading a campaign and automatically rerunning it. The 
results will be automatically archived into the database for 
easy extraction and comparison with previous experiments. 
Similarly the SWAN grids, a coarse and a fine regular 
rectangular grid for each of the northern and southern North 
Carolina shorelines, are being evaluated and may change as 
well.

V. CONCLUSIONS

Performance experiments are labor intensive and the use of 
clusters and grids with varying system and node architectures 
has only increased to combinatorial complexity of running 
extensive suites of experiments.  Faced with this challenge, 
we automated our performance evaluation work through the
use of a grid workflow framework. 

Once an application has been “wrapped” to connect its 
build and execution procedures to the framework, it is easy to 
design performance campaigns to do extensive and exhaustive 
studies.  Because campaigns can be rerun, it is much easier to 
study statistical variation; to perform regression studies when 
hardware or software, either application or system, has 
changed; and it is relatively easy to perform these studies 
across a range of diverse systems.  

Working with new applications does require the manual 
creation of wrapper scripts.  While this requires a modest 
amount of work by an expert, in the end it saves enormous 
amounts of tedious effort running experiments.

Thus far, our campaigns have been structured as exhaustive 
searches in small sub-spaces of the available parameters.  In 
our applications we needed a full combinatorial search, so this 

Fig. 9 ADCIRC: Fraction of MPI time on the BGL



was not an issue for us. In the future we are planning to move 
towards more efficient optimization methods as are being 
explored under the term “autotuning”.[25]-[27] These 
searches will require loops and other data-dependent control 
flow in the specification and execution of the campaign.  We 
are investigating frameworks that can support these 
capabilities.
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