
http://www.renci.org/techreports
RENCI Technical Report Series

TR-08-03

May 5, 2008

Work�ows for Performance Evaluation and Tuning

Je�rey L. Tilson
Mark S.C. Reed

Robert J. Fowler

Workflows for Performance Evaluation and Tuning
Jeffrey L. Tilson 1, Mark S.C. Reed 2, Robert J. Fowler3

Renaissance Computing Institute, University of North Carolina at Chapel Hill, U.S.A.
{1jtilson, 2markreed, 3rjf }@renci.org

Abstract— We report our experiences with using high-
throughput techniques to run large sets of performance
experiments on collections of grid accessible parallel computer
systems for the purpose of deploying optimally compiled and
configured scientific applications. In these environments, the set
of variable parameters (compiler, link, and runtime flags;
application and library options; partition size) can be very large,
so running the performance ensembles is labor intensive, tedious,
and prone to errors. Automating this process improves
productivity, reduces barriers to deploying and maintaining
multi-platform codes, and facilitates the tracking of application
and system performance over time. We describe the design and
implementation of our system for running performance
ensembles and we use two case studies as the basis for evaluating
the long term potential for this approach. The architecture of a
prototype benchmarking system is presented along with results
on the efficacy of the workflow approach.

I. INTRODUCTION

There are a wide variety of High Performance Computing
(HPC) system architectures deployed today, from commodity
clusters to special purpose machines. In this environment,
there are many ways of building, configuring, and running
applications on each system. In this complex environment,
manually running extensive performance experiments is
infeasible and attempts to automate the process using an ad
hoc methods based on custom scripts fall short. We have
therefore begun to use a workflow framework to manage our
benchmarking and performance tuning experiments. We
report here on our approach and our experiences.

Many large-scale scientific applications have now outlasted
several generations of high-end system architectures. These
are now used across the full spectrum of currently active
hardware and software environments. These codes can have
many, possibly conflicting, configuration options with choices
of solver methods, external libraries, and alternative
algorithms. These choices potentially result in significant
differences in performance for each target system.

Traditional benchmarking methods are not sufficient to
handle the increasing complexity of rapidly evolving HPC
systems as evidenced by the growth in chip complexity. Chips
have gone from single-CPU systems to multi-processors, then
multi-core, and now heterogeneous many-core systems that
include external accelerator units. This complexity is
exacerbated by the use of deep memory hierarchies and the
mix of distributed and shared memory components resulting
in performance receding further behind the memory wall. Yet,
even these are not the final complications as growing
hardware complexity is mirrored by the rapid growth in
software choices including compilers, compiler options,

communications libraries and other run-time configuration
options. Finally, the rankings of these choices depend on the
complexity and size of inputs as well as on system partition
size. This proliferation of options is likely to increase in the
future.

Thus, the overarching question becomes; given one or more
large-scale HPC systems, what combination of these options
should one select in the deployment of an application? Ideally,
the analyst would test all the possible choices under
conditions that mimic expected usage. Unfortunately, the
number of combinations of these possible choices generally
precludes manually performing such an analysis. Even taking
a small-subset of likely important options can grow to a large
number of trials. Thus the ability of the analyst to
exhaustively, or even reasonably, optimize the deployment of
the application or to state with confidence that the optimal
choices have been made is difficult.

A related concept addressable by this work is the ongoing
maintenance of such codes through periodic performance
assurance testing especially across multiple platforms. This is
a vital and often even more time-consuming process than the
initial deployment.

In this paper, we report our explorations into techniques for
improving the productivity of researchers responsible for the
deployment and maintenance of multi-platform codes within a
grid-services environment. In particular, we describe methods
for facilitating performance studies in an environment that
involves many platforms and configuration alternatives. We
evaluate the relative strengths and weaknesses of our
experimental prototypes.

II. PERFORMANCE CAMPAIGNS

A performance campaign is defined in this work as a set of
experiments across (possibly) multiple platforms. Each
experiment is defined by a set of configuration options and
test inputs. A campaign step runs an experiment by building a
configuration on a system and then executing it on a specific
input using a specified environment. For example, a parallel
scaling study of an application on 64, 128, and 256 nodes, on
three different clusters, and for two sets of compile or link
parameters would require 18 separate campaign steps. Thus a
campaign is such a set of campaign steps. This High
ThroughPut (HTP) workflow automates the execution of the
campaign. A highly simplified specification for a campaign
step is shown in Table 1.

A. Base Cyberinfrastructure

Fig. 1 shows the structure of our performance workflow
environment. The outer Workflow Layer enacts the
performance workflow and serves as the user interface.
Campaign specifications are entered at this layer by choosing

a particular workflow and the configuration option ranges for
the campaign. The specified workflow assembles the
campaign from steps by enumerating combinations of
configuration options. We use a standard workflow
framework, so it is easy to create new workflows by adapting
and extending existing ones. The case studies used here are
adaptations of a base workflow to applications in Chemistry
and in Storm Surge modelling. The Scientific Services Layer
encapsulates the web and grid services that initiate the
compilation, linking and running steps on (potentially) remote
target systems. The Scientific Apps Layer consists of a set of
scripts (Perl, Python, bash, etc.) installed on the remote
machine to connect the workflow services to the native
build/run processes of the scientific application under study.

Select outputs from all parts of each campaign step are
committed to persistent storage by sending them to a
relational database provided by the Database Layer.

B. Workflow Technologies

Our system uses the Taverna Workbench [1] to define and
instantiate workflows. We chose Taverna for this work
because of the large number of included services and our
substantial experience building Taverna-based workflows for
biological applications.[2],[3] Though Taverna doesn’t
directly support grid services, the Scientific Services Layer
provides mechanisms for using the standard Taverna system
within a computational grid [4],[5] system.

The Taverna Workbench integrates many software tools,
including web services, and provides a desktop authoring
environment and enactment engine based on a centralized
scheduling model. In particular, Taverna uses a centralized
control approach to enact non-directed acyclic graphs.[6] This
is a powerful approach permitting extensive use of implicit
iteration and basic failure recovery modes.

C. Service technologies

The service technologies used to wrap, grid-enable, and
invoke the scientific applications are implemented with the
Generic Service Toolkit (GST).[7] GST is a Java-based
system that enables a user to write a service that will invoke
applications on a remote machine. GST provides a simple
web-services (wsdl) interface compatible with Taverna; uses
grid-services to manage data (file) movement between the
remote computer and the application computer; and launches
the application. GST uses the Java CoG interface [8] to
Globus GT4.[9]

Using GST to create services provides two benefits. The
first is the ability to exploit grid-connected resources without
requiring the workflow user to deal explicitly with the grid.
Second, as a web service, it fits readily into the Taverna
framework. Specifically, the workflow accesses the GST
service using web services; the GST service in turn invokes a
grid service that transfers data files to a remote grid-hosting
computer using gridFTP and launches jobs via GRAM.

As an example we describe some specifics of the Chemistry
workflow services (See Case Studies: GAMESS). Three
services are required for this workflow: Compile, Link, and
Execute. In practice, each campaign step is stored to a
uniquely named campaign step file. Thus, each service is
designed to read a campaign step specification file and to act
on it.

1. The Compile Service decides which compiler and
options to use in this step. It passes this information
to the target system.

2. The Linker Service deals with the choice of which
libraries to use at link time. Typical options include
choices of math, and tracing libraries.

3. The Execute Service handles runtime choices such as
specifying the launcher to use, the number of cores
and nodes, and other command line options These
may include selection of dynamically linked libraries
such as the communication library to employ.

TABLE 1

REPRESENTATIVE NAME-VALUE PAIRS FOR A CAMPAIGN STEP

CC /opt/mpi/openmpi/intel/bin/
mpicc

FC /opt/mpi/openmpi/intel/bin/
mpif77

FFLAGS -O3 –xT –i8 –pg
NODES 8
CORESPERNODE 4
CAMPAIGNNAME GamessNetworkTest
LAUNCHER /opt/mpi/openmpi/gnu/bin/

mpirun --mca btl mvapi,self
-verbose

TRACKNAME Standard
CODE Gamess

Fig. 1. Depiction of the layered structure of our performance campaign
environment

These three services can be combined in different ways
depending on target application. For example, the Compile
and Link Services are combined in the Chemistry case study.

Most of these services are implemented as a script on the
target system that accepts information from its associated
service and passes it to the application’s mechanisms for
building and executing. Build mechanisms have become
extremely complex, and this approach reduces the need to
modify the changes to the native build or run procedures of
the application.

The process for “wrapping” one of these scripts is basically
the same for all three services, thus we will illustrate this
process by focusing on the Compile Service. We begin by
selecting the server onto which the service will be run. Fig. 2
depicts the hardware environment. In this figure, the GST
Services server is a large-memory Linux machine that runs all
the GST services. It is a grid-hosting environment running
GT4 and Java 1.5. First the GST software is installed onto the
system. The associated bridging script (compall_workflow)
interfaces with the GAMESS [10] native compile procedure (a
slightly modified version of compall) and is installed on the
remote system.

We then create three GST description files. GST names
these the HostDescription, ApplicationDescription, and
ServiceMap files, respectively. These files together com-
pletely specify the service. The ServiceMap file is an
application-specific configuration file which specifies the
interface between the service and the application (e.g.,
compall_workflow). In the Compile Service this includes a
single input port referring to the campaign step description file.
The Compile Service takes this campaign step and delivers it
via gridFTP to the remote machine. After delivery, the remote
script is invoked to read the “step” and pass the information to
the native compall script. The ServiceMap also describes an
output port that receives stdout and stderr streams returned to
the workflow from the compilation process.

The ApplicationDescription file specifies the location of the
application (compall_workflow) on the target system. The
HostDescription file specifies how to launch jobs to the target
system. For the GAMESS workflow, Compile and Link
scripts are launched as “fork” jobs to the remote parallel

system’s head-node via the GT4 jobmanager-fork launcher.
For example, on one of our systems the Execute Service
launches the GAMESS application as an MPI [11] job.

The workflow coordinates with the GST service to define
and create scratch directories and unique filenames for all
input data. To reduce the number of redundant
compilation/linking steps when the same executable can be
used for multiple experiments, e.g., a scaling experiment using
different partition sizes, the workflow reuses compilation and
linking configurations when it can.

D. Storage of results

The final step of the workflow is the archiving of results
from the Compile, Link, and Execute steps into a relational
database. Our experiments use MySQL. A simple schema was
sufficient for these experiments, see Table 2. We are contem-
plating extensions and perhaps the adoption of a system such
as PerfTrack.[12]

III. CASE STUDIES

To evaluate our strategy for automating performance
campaigns, we undertook two case studies. These studies were
intended to understand how much of a workflow can be
reused between applications, to exercise a representative
database schema, and to identify simplifications to the work-
flow system that facilitate the kinds of optimizations an
analyst might ask of an application. The performance
workflow system is intended to help answer questions

Fig. 2. Hardware environment used by the performance workflows.
Large-scale computations were performed on both a large Linux cluster
computer and a large IBM Blue Gene/L (BGL)

TABLE 2

DATATYPES STORED FOR PERFORMANCE WORKFLOWS

MySQL name Description Example
CampaignName Name GamessNetworkingTe

st
CampaignDate Launch date of

the campaign
Feb 20 2007

CampaignUser Workflow user Jtilson
Target CPU type X86_64
Machine Machine name Kittyhawk
Code application Gamess
ExtraDescription User selection Compare IB to gigE

under hard scaling
Clang C compiler icc
Flang F compiler ifort
Libs Additional libs -lmass
Nodes Number of

nodes
8

CoresPerNode Number cores
per node

4

TotalCores Cores for run 32
RunCase Input file Exam01
Times walltimes List of times
DiskUsage disk space used List of sizes
ActualCores ActualTotal

cores used by
the app.

Not always the same
as TotalCores

mpiTimes mpiTimes List of times
ioTimes I/O Times List of times

typically asked by users, developers, or management such as:
1. How well does the application scale for a fixed

problem size? (hard scaling)
2. How well does the application scale for growing

problem sizes? (weak scaling)
3. How well does the application scale on alternative

interconnection networks and communication
libraries?

4. What is the impact of choosing different libraries?
5. How many cores per node can be used at each scale?
6. How much overhead results from turning on

profiling or message tracing?
7. How do compiler optimization choices impact

scaling and performance?
8. What is the impact of using highly tuned cache

optimizations?
Note that the expense of running experiments in the

conventional way means that compiler, communications, and
library combinations are rarely tested beyond the “obvious” or
“historically good” choices.

The first case study addresses a problem in computational
chemistry using the highly optimized GAMESS application.
The second case study looks at a complicated system of
several different applications that is important for large scale
storm surge modelling.

It is not the purpose of this paper to discuss either specific
performance results or compare them to published results.
Rather, we focus on evaluating the impact of using workflow
techniques on the process for performing large-scale and HTP
performance measurement. Thus the specific results should be
considered as suggestive, unless otherwise indicated.

For each case study we give representative results. We
discuss observed difficulties in the adaptation of the workflow
to the scientific application, and what database schema
limitations, if any, were encountered. In the Conclusions we
present plans for future deployments.

A. Case Study One: GAMESS

1) Workflow and Campaign description

The first case study involves the General Atomic and
Molecular Electronic Structure System [10], GAMESS, a
general purpose ab initio quantum chemistry package with a
long history of performance and parallel scalability upgrades.

Fig. 3 is a typical workflow graphic from Taverna which
shows major workflow steps. The MySQL sub-workflow is in
Fig. 4. In this case study, the Compile and Link Services are
combined. For the purposes of illustration some shim- and
I/O-related information has been removed.

Each box in these Taverna images represents either a
processor or an I/O port. The light brown boxes are Taverna
local processors (shims, Java beanshell code) that run within
the workflow on the driving system. These shims couple the
workflow datatypes to the data requirements of a specific
application. The “Gamess” and “CompileGamess” processors
(colored Green) are the main steps of the workflows.

These representative performance campaigns are intended
to answer two questions: How does GAMESS (hard) scale
when using an Infiniband (IB) versus a Gigabit Ethernet (gigE)
interconnection network? For a fixed number of processors,
how do high levels of compiler optimizations compare?

In the following discussion, some GAMESS-specific

A B

Fig. 3. Depictions of the Compile and Link Services as part of a combined “build” sub-workflow (A) and the Execution sub-workflow(B) for the GAMESS
case study. The green colored Gamess and compileGamess boxes refer to the actual GST service calls to the Execute and Compile+Link steps, respectively.
The remaining steps manage remote directory names, filenames, GAMESS output parsing and workflow timing.

nomenclature is used. For the first campaign, we specify a
single input (molecule) file for the GAMESS calculation. We
choose the “standard.inp” input file supplied with the
distribution. This input file performs a DFT(B3LYP)
calculation using a 6-311G(d,p) basis set on the molecular
system; O2SiCF2. Each campaign step was specified to
compile the GAMESS using version 9.1 of the Intel compilers
for Linux. Interprocessor communications was managed using
openMPI.[13] GAMESS was built using the “DDI over MPI”
configuration. The compiler options were set to “-O3 -xT
-i8” and basic linear algebra functionality was supplied by
ATLAS [14], version 3.7.19. The parameters that were varied
in the campaign include the number of nodes (8,16,32,64),
and the choice of interconnection network. The number of
cores per node is fixed at 4. Runtime selection of the network
fabric and protocol was simplified by our concomitant
selection of openMPI. The generality of our services, however,
permits other approaches such as re-linking with alternative
implementations of MPI. Specifically, as part of the campaign,
the “launcher” (See Table 2) parameters values were:

 mpirun --mca btl mvapi,self (IB)
 mpirun --mca btl tcp,self --mca

btl_tcp_if_include eth0 (gigE)
This creates 8 campaign steps. The final energy for each

step was recorded into the database and the other outputs are
stored in the database for correctness checking.

2) GAMESS Results

The scaling results are shown in Fig. 5. Not surprisingly,
GAMESS scales less well using gigE than when using
Infiniband (IB). Assuming ideal behaviour at 32 cores, the IB
test indicates a parallel efficiency of 69.7% on 256 cores. The
analogous gigE value becomes 45.8%. The fact that IB is a
faster network and that GAMESS scales better on IB is not the
point of these results. Rather, the HTP approach allows the
researcher to look at this data and then ask follow-on
questions such as ”How does scaling change with multiple
kinds of compiler options?”,”How does scaling vary
with/without using ATLAS?”,”How does scaling vary with
different compilers?” Manually recording performance
information is tedious, so automatically and consistently
archiving results in a database for subsequent data mining is a
large boost for productivity.

B. Case Study Two: The North Carolina Floodplain Mapping
Project (NCFMP).

The NCFMP partnership1 is developing a state-of-the-art
system for the simulation of storm surge levels along the
North Carolina coastal region waters for input into floodplain
analysis systems as required by the Federal Emergency
Management Agency (FEMA). The computationally
expensive piece of this analysis is being executed on an IBM
Blue Gene/L (BGL) machine, but can also effectively use
large-scale clusters that have high performance interconnects.
In this work we report BGL results.

Each simulation of the storm surge for a particular storm
scenario is performed as a pipelined composition (dataflow) of
wind, wave, and surge models. Storm scenarios involve
synthetically-generated hurricanes, category types 3 through 5

1

This is a multi-organizational effort involving the Renaissance Computing
Institute (RENCI), the UNC-Chapel Hill Institute of Marine Sciences, the US
Army Corps of Engineers,, Applied Research Associates, Coastal Risk
Technologies, Dewberry, and the North Carolina Division of Emergency
Management.

Fig. 4. Depiction of the sub-workflow used to populate the performance
database (MySQL) for the GAMESS case study. The vertically aligned
input ports are combined in the PreprocessDataForSQL shim and passed
to the update service.

Fig. 5 GAMESS networking campaign. Total Time To Solution (TTS) as
a function of the number of applied cluster cores. A comparison between
using an Ethernet (gigE) versus an Infiniband (IB) interconnect.

for both land-falling and bypassing storms, as well as extra-
tropical storms. The four models that comprise the NCFMP
system include a Hurricane Boundary Layer (HBL) model [15]
for wind and pressure, a basin-scale wave model for offshore
waves, WaveWatch3 (WW3) [16],[17], a near shore wave
model, SWAN [18],[19], and a state-of-the-art coastal
circulation model ADCIRC [20] to compute the coastal
inundation. The model components are coupled together
through file exchange and the entire simulation process is
scripted.

1) Computational Requirements

For each storm track (scenario), there is an HBL wind run,
followed by a WW3 run and then four SWAN runs; two runs
on coarse grids run concurrently, followed by two runs on fine
grids which may also run concurrently. These are followed by
two ADCIRC runs, one without forcing from the SWAN
output and one with the forcing to help quantify the effect of
waves on storm surge. By far, the most computationally
expensive steps are the SWAN and ADCIRC runs. Our testing
framework focuses on each of these components individually.

The computational workload for the entire project is
substantial. The first phase of the study required over 1.4
million processor hours on the BGL system. The next phase of
analysis will be about one order of magnitude larger.
Efficient execution is vital.

2) Re-Purposing the Base Workflow

We adapted the base performance workflow to run the
storm tracks for the NCFMP system on the BGL. This allows
us to reuse much of the workflow infrastructure, such as the
generically defined inputs and outputs, the construction of the
campaign steps and the sub-workflows that produce the
campaign step files and that store results into the relational
database. The NCFMP workflow is shown in Fig. 6. This is
similar to the workflow shown in Fig. 3(B). The primary
difference is the green box at the heart of the workflow, here
labelled NCFMP. This is where the NCFMP web service is
invoked, rather than the GAMESS web service. Thus, we are
required to write a new web service. This is not difficult and is
done by creating GST description files, as described in the
Service Technologies section. This wraps an application and
uses Globus to launch jobs to the BGL. As in the GAMESS
studies, GST wrapping requires specification of input and
outputs to the application and the writing of a short script to
run on the target system. This script is invoked by the web
service. It performs the campaign step compilation; submits
the application to the batch queue; and passes parsed results
back to the workflow through the web service. The script
interfaces with the production infrastructure developed for
NCFMP. The various compile and linking options are passed
cleanly into the respective source trees for SWAN and
ADCIRC without modifying the original code. Thus, the
workflow is minimally intrusive and the abstractions for the
generic design proved successful.

3) Performance Results

Several performance campaigns were enacted for both
SWAN and ADCIRC to quantify their performance and
scaling attributes, as well as to illustrate the use of HTP
techniques to answer some of the questions posed at the
beginning of Case Studies. These campaigns involved running
a short test storm track that modelled 5.5 hours around
landfall of the 1996 hurricane Fran that struck the North
Carolina coast. Each individual campaign step was a
particular combination of compiler options, link options,
processor counts, and distribution across nodes for either
SWAN or ADCIRC.

3.1) SWAN Results

MASS libraries: The use of the Mathematical Acceleration
Subsystem (MASS) library routines are thought to improve
performance [21] on the BGL system for frequently used math
intrinsic functions such as sqrt or exp. We performed a
campaign to determine whether using MASS would improve
overall code performance and if so, by how much. In
combination with other choices of compiler options, these
experiments produced many runs that differ only in selection
of the MASS library. Side-by-side comparisons using this set
show that, indeed, using MASS did always improve
performance. For SWAN on 100 and 150 processors the
improvement varied from 4-18% with one exception. For
SWAN on 16 processors, where the time spent on MPI and
I/O is proportionally less important (and are unaffected by the
use of MASS libraries) we find that the results split into two
categories. Either there was a no statistically significant
benefit, 1-3% for codes with optimization levels of O5 (and
one with O3 qhot) or there was a significant benefit (11-
16%) for all other combinations. This contradicts the Blue
Gene Compiler Guide [21] which indicates that the MASS
libraries will be automatically enabled for optimization levels
O5, O4, and O3 qhot. Our findings agree with this for the O5

Fig. 6 Depiction of the primary NCFML sub-workflow. The storage sub-
workflow is that same as that in Fig. 4 and is not pictured here. The green
colored NCFMP box refers to the GST service call.

and O3 qhot settings but we consistently observed a
significant performance boost using O4 with the MASS
libraries over O4 without the explicit
specification. This was observed on both inner
grids and for all of the processor counts. This may be related
to the use of the sqrt function in the SWAN code. Without
automation, it is doubtful that we could have done the full set
of runs.

Cache Optimizations: The IBM blrts compiler family
allows the selection of the qcache option with very specific
cache optimizations that can be tuned to the PowerPC
architecture on the BGL. As with the MASS campaign, we
compared results for many compiler and processor
configurations with and without this option specified. Overall,
no systematic benefit of using this optimization was found
with generally little or no effect observed.

Compiler Optimizations: For the time consuming inner
grid runs of SWAN, we examined combinations of the base
optimizations O3, qnoautoconfig O4, qnoautoconfig
O5 with the additional optimizations of qnounwind,

qunroll=yes, qarch=400, qarch=400d qtune=440,
qbgl qhot (used qipa for O3) on 16 and 128 processors.
The qarch=440 flag was the only one that consistently
showed significant performance improvements albeit with one
exception. The qarch flag only with the O4 optimization
only on one of the inner grids inexplicably did much worse
then any other setting. Over all cases the “-O5 –
qnoautoconfig –qarch=440” was the fastest setting
for both grids and processor counts.

Scaling: Fig. 7 shows the results of a hard scaling study for
the SWAN code using the inner (finer) grid. As can be seen,

the application does not scale to large numbers of processors
and this is reflected in both the efficiency plot (scaled to the 4
core results) and the fraction of run time spent in MPI calls, as
reported by mpiP [22]. These are the results for the short,
hurricane Fran test track but they are representative of the
longer runs as the tracks will get longer in time but will run on
the same grid. The plots show that MPI time grows steadily
out to 200 cores and that the efficiency of the code is less than
50% at 100 cores. The conclusion from this study is that it is
more productive to run several storm tracks concurrently on
smaller system partitions, than to use large partitions to speed
up individual runs.

3.2) ADCIRC Results

MASS Libraries: For ADCIRC, running on 128 processors
and using various optimization flags combined with O3, O4,
and O5, we saw an additional 3-7% improvement when using
the MASS libraries versus the identical run without MASS.
As noted in the SWAN results section, this is somewhat at
odds with the Blue Gene compiler documentation.

Compiler Optimizations: We performed several campaigns
to evaluate compiler flags. These generated nearly 90
ADCIRC runs on 128 processors. The variation in time from
fastest to slowest for the 1996 Fran test track was 40%. We
concluded that a minimum level of O3 was required to give
good performance. The O4 and O5 flags yielded further
improvements. For the blrts compiler, these levels augment
O3 with some specific additional optimizations. To clarify
the effects, we examined optimization levels of O3 with the
MASS libraries and then with selected additional
optimizations. We summarize our results as follows. The
qarch=440 was better than qarch=440d across various
optimization levels. The code was not sensitive to some

particular combination of compiler options; rather we
observed a clustering of campaign steps that showed similar
performance (within 3% of the best time). The qhot flag

Fig. 7. SWAN (hard) scaling on the RENCI IBM BG/L system. Red
circles indicate the fraction of total run time spent in MPI library calls.
Green squares are the parallel efficiency relative to the 4 processor run.

Fig. 8 ADCIRC hard scaling results from the RENCI IBM BGL system.
Compared are using virtual node (vn) versus coprocessor (co) modes.
Ideal scaling shown as a solid black line.

optimization seemed to improve performance with
qhot=vector or qhot=simd being the best, followed
closely by qhot=level=1. Curiously, further increasing

this, using qhot=level=2 degraded the performance for
this code. It was hard to see any consistent benefit when using
qbgl, qessl, qnounwind and using qunroll=yes only
resulted in slower runs. Using the inter-procedural analysis,
qipa, with various levels also failed to provide any boost in
performance. To summarize, using the MASS libraries with “-
O3 -qnoautoconfig -qarch=440 -qtune=440 -
qhot=vector” seems to be a good combination. Without
automation, this search would have been too labor-intensive to
have performed.

Scaling: Fig. 8 shows ADCIRC (hard) scaling on the BGL
system. The plot shows results for running the code in both
available modes, namely coprocessor mode (co) and virtual
node (vn) mode. For this application, no benefit from running
in coprocessor mode was observed. ADCIRC exhibits good
scaling up to around 100 processors and beneficial scaling to
500 or so processors with level O3 optimization. Fig. 9 shows
the percentage of MPI time spent running in vn mode as
reported from profiling with the MPI trace library [23]
available on the BGL system. In contrast to SWAN, the ratio
of MPI time to computation grows modestly in runs up to 800
processors. This is reflected in the nice scaling exhibited in
Fig. 8.

IV. EVALUATION

Adaptation of the base workflow and services to GAMESS
was not difficult. The workflow itself required additional
shims to interface GAMESS output files to the workflow and
to fetch relevant information (times, energies) for the database.
Two GST services that were written for performing the
Compile + Link, and Execute steps were constructed from
base services. Thus, once access to the remote machines is
granted, deployment of the service is fairly straightforward. It
was necessary to have login access to the remote machines to
debug services, and understand developmental issues that
arise while adapting the base workflows.

A few problems occurred when adapting the system to
GAMESS. The first was an insufficient schema for the
MySQL database. This observation will likely be true for
several new applications during our prototyping period of
work. The second problem pertains to the inability to
disconnect/reconnect to the workflow in Taverna. A newer
version of Taverna (1.7) supplies techniques for doing this.
Other issues include the occasional failure to update the
database. For the GAMESS “standard.inp” file, the run times
are sufficiently long that for even a modest sized campaign
(64 or fewer steps, several days runtime), the chances of a
system failure somewhere in the grid environment is high. A
failure results in complete loss of all data for the campaign. So
for now, it is important for campaigns to be quite focused by
varying only a few options at a time. In the future, we will
incorporate methods for robustly restarting workflows and
campaigns.[24]

A major benefit of automating performance experiments as
described in this work is that it makes regression testing more
economical. For example, a new and improved grid (a two
dimensional irregular finite element mesh) will be available
soon for ADCIRC. This grid is nominally 25% larger than the
current grid and will resolve more features along the North
Carolina coast. Repeating our extensive suite of past
performance experiments for the new configuration will be
doable with minimal commitment of labor. Using the
framework described in this paper that is simply a matter of
reloading a campaign and automatically rerunning it. The
results will be automatically archived into the database for
easy extraction and comparison with previous experiments.
Similarly the SWAN grids, a coarse and a fine regular
rectangular grid for each of the northern and southern North
Carolina shorelines, are being evaluated and may change as
well.

V. CONCLUSIONS

Performance experiments are labor intensive and the use of
clusters and grids with varying system and node architectures
has only increased to combinatorial complexity of running
extensive suites of experiments. Faced with this challenge,
we automated our performance evaluation work through the
use of a grid workflow framework.

Once an application has been “wrapped” to connect its
build and execution procedures to the framework, it is easy to
design performance campaigns to do extensive and exhaustive
studies. Because campaigns can be rerun, it is much easier to
study statistical variation; to perform regression studies when
hardware or software, either application or system, has
changed; and it is relatively easy to perform these studies
across a range of diverse systems.

Working with new applications does require the manual
creation of wrapper scripts. While this requires a modest
amount of work by an expert, in the end it saves enormous
amounts of tedious effort running experiments.

Thus far, our campaigns have been structured as exhaustive
searches in small sub-spaces of the available parameters. In
our applications we needed a full combinatorial search, so this

Fig. 9 ADCIRC: Fraction of MPI time on the BGL

was not an issue for us. In the future we are planning to move
towards more efficient optimization methods as are being
explored under the term “autotuning”.[25]-[27] These
searches will require loops and other data-dependent control
flow in the specification and execution of the campaign. We
are investigating frameworks that can support these
capabilities.

ACKNOWLEDGEMENTS

We gratefully acknowledge support from the NSF:
Collaborative Research: The NSF Cyberinfrastructure Eval-
uation Center SCI-0510267.

We also wish to thank the Renaissance Computing Institute
for providing access to large-scale computing platforms and
Bradley Viviano for essential cluster, IBM BGL, and Globus
GT4 support

We wish to thank Brian Blanton and Howard Lander for
fruitful discussions on the NCFMP project.

REFERENCES

[1] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver,
M.R. Pocock, A. Wipat, and P. Li, “Taverna: a tool for the composition
and enactment of bioinformatics workflows”, Bioinformatics, 20,
3045–3054, 2004.

[2] J.L. Tilson, G. Rendon, M.-F. Ger, E. Jakobsson, “MotifNetwork: A
Grid-enabled Workflow for High-throughput Domain Analysis of
Biological Sequences: Implications for annotation and study of
phylogeny, protein interactions, and intraspecies variation” in 7th IEEE
International Conference on Bioinformatics and Bioengineering
(BIBE’07), 2007, pp. 620-627.

[3] J.L. Tilson, A. Blatecky, G. Rendon, M.-F. Ger, E. Jakobsson,
“MotifNetwork: Genome-Wide Domain Analysis using Grid-enabled
Workflows” in 7th IEEE International Conference on Bioinformatics
and Bioengineering (BIBE’07), 2007, pp.872-879.

[4] I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid:
Enabling Scalable Virtual Organizations” International J.
Supercomputer Applications, 15(3), 2001.

[5] I. Foster, C. Kesselman, Chapter 2 of The Grid: Blueprint for a New
Computing Infrastructure, Morgan-Kaufman, 1999.

[6] J. Yu, R. Buyya, “A Taxonomy of Workflow Management Systems for
Grid Computing,” Technical Report, GRIDS-TR-2005-1, Grid
Computing and Distributed Systems Laboratory, University of
Melbourne, Australia, March 10, 2005

[7] G. Kandaswamy, L. Fang, Y. Huang, S. Shirasuna, S. Marru, and D.
Gannon “Building Web Services for Scientific Grid Applications,”
IBM Journal of Research and Development, 50(2/3), pp. 249-260,
2006.

[8] G.von Laszewski, I. Foster, and J. Gawor, “CoG kits: a bridge between
commodity distributed computing and high-performance grids” in
Proceedings of the ACM 2000 Conference on Java Grande (San
Francisco, California, United States, June 03 - 04). JAVA '00, 2000.
ACM Press, New York, NY, pp. 97-106.

[9] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” in IFIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, 2006, pp 2-13.
http://www.globus.org

[10] M.S. Gordon, M.W. Schmidt, "Advances in electronic structure theory:
GAMESS a decade later," in Theory and Applications of

Computational Chemistry: the first forty years C.E. Dykstra, G.
Frenking, K.S. Kim, G.E. Scuseria, Eds., Elsevier, Amsterdam, pp.
1167-1189., 2005.

[11] W. Gropp, E. Lusk, A. Skjellum, Using MPI: Portable Parallel
Programming with the Message-Passing Interface, 2nd ed., MIT Press,
1994

[12] R.L. Knapp, K. Mohror, A. Amauba, K.L. Karavanic, A. Neben, T.
Conerly, and J. May, "PerfTrack: Scalable Application Performance
Diagnosis for Linux Clusters," in 8th LCI International Conference on
High-Performance Clustered Computing, 2007, May 15-17, South
Lake Tahoe, California, USA.

[13] R.L. Graham, G.M. Shipman, B.W. Barrett, R.H. Castain, G. Bosilca,
A. Lumsdaine, “Open MPI: A High-Performance, Heterogeneous
MPI,” in Proceedings, Fifth International Workshop on Algorithms,
Models and Tools for Parallel Computing on Heterogeneous Networks,
2006, Barcelona, Spain.

[14] R.C.Whaley and A.Petitet, “Minimizing development and maintenance
costs in supporting persistently optimized (BLAS),” Software: Practice
and Experience, 35, 101-121, 2005.

[15] P.J. Vickery, P.F. Skerjl, and L.A. Twisdale, “Simulation of hurricane
risk in the U.S. using empirical track model,” J.Struct. Engr., pp. 1222-
1237, 2000.

[16] H.L. Tolman, User manual and system documentation of
WAVEWATCH-III, Version 2.22. Technical Note, U.S. Department of
Commerce, NOAA, NWS, NCEP, Washington, DC., 2002.

[17] H.L. Tolman, D.V. Chalikov, “Source terms in a third-generation
wind-wave model,” J. Phys. Oceanogr., 26, pp. 2497-2518, 1996.

[18] N. Booij, R.C. Ris and L.H. Holthuijsen, “A third-generation wave
model for coastal regions, Part I, Model description and validation,” J.
of Geophysical Research, C4, 104, pp. 7649-7666, 1999.

[19] W.E. Rogers, J.M. Kaihatu, H.A.H. Petit, N. Booij, and L.H.
Holthuijsen, “Diffusion reduction in a arbitrary scale third generation
wind wave model,” Ocean Engng., 29, pp. 1357-1390, 2002.

[20] R.A. Luettich, Jr., J.J. Westerink, and N.W. Scheffner, “ADCIRC: an
advanced three-dimensional circulation model for shelves coasts and
estuaries,” U.S. Army Engineers Waterways Experiment Station,
Vicksburg, MS, Report 1: Theory and Methodology of ADCIRC-2DDI
and ADCIRC-3DL, Dredging Research Program Technical Report
DRP-92-6, p. 137, 1992.

[21] Using the XL Compilers for Blue Gene, IBM, 1st ed.,SC10-4310-00,
2006.

[22] J.S.Vetter and M.O.McCracken, "Statistical Scalability Analysis of
Communication Operations in Distributed Applications," Proc. ACM
SIGPLAN Symp. on Principles and Practice of Parallel Programming
(PPOPP), 2001.

[23] G. Mullen-Schultz, Blue Gene/L: Performance Analysis Tools, IBM
Red Books, SG24-7278-00, July 2006.

[24] G. Kandaswamy, A. Mandel, and D.A. Reed, “Fault Tolerance and
Recovery of Scientif Workflows on Computational Grids,”in Proc.
IEEE International Symposium on Cluster Computing and the Grid”
workshop on Resiliency in High-Performance Computing in
conjunction with CCGrid’08, 2008. to appear
http://www.renci.org/~anirban/papers/PaperResilience08-Anirban.pdf

[25] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, J. Demmel,
"Optimization of Sparse Matrix-Vector Multiplication on Emerging
Multicore Platforms," Supercomputing (SC), 2007.

[26] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
R. Clint Whaley, K. Yelick, “Self-Adapting Linear Algebra Algorithms
and Software,”in Proc. IEEE, Special Issue on Program Generation,
Optimization, and Adaptation, February 2005, 93(2).

[27] CScADS Workshop on Automatic Tuning for Petascale Systems, K.
Yellick and K. Cooper (organizers), http://cscads.rice.edu-
/workshops/july2007/autotune-workshop-07

	TR0803.pdf
	tilson-cluster-08-final

