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Abstract

Today, clusters built from commodity PCs dominate
high-performance computing, with systems contain-
ing thousands of processors now being deployed. As
node counts for multi-teraflop systems grow to thou-
sands and with proposed petaflop system likely to
contain tens of thousands of nodes, the standard as-
sumption that system hardware and software are fully
reliable becomes much less credible. Concomitantly,
understanding application sensitivity to system fail-
ures is critical to establishing confidence in the out-
puts of large-scale applications.

Using software fault injection, we simulated sin-
gle bit memory errors, register file upsets and MPI
message payload corruption and measured the behav-
ioral responses for a suite of MPI applications. These
experiments showed that most applications are very
sensitive to even single errors. Perhaps most worri-
some, the errors were often undetected, yielding erro-
neous output with no user indicators. Encouragingly,
even minimal internal application error checking and
program assertions can detect some of the faults we
injected.

1 Introduction

Today, clusters built from commodity PCs dominate
high-performance computing, with systems contain-
ing thousands of processors now being deployed. As
node counts for multi-teraflop systems grow to thou-
sands and with proposed petaflop system likely to
contain tens of thousands of nodes, the standard as-
sumption that system hardware and software are fully
reliable becomes much less credible. This is especially
true for systems built from very low cost components
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that lack error correcting memory or end-to-end error
detection and correction for message transport.

Hardware failures are usually classified as either
hard errors or soft (transient) errors. Hard errors
are permanent physical defects whose repair normally
requires component replacement (e.g., a power supply
or fan failure). Conversely, soft errors (also known as
single-event upsets) include both transient faults in
semiconductor devices (e.g., memory or register bit
errors) and recoverable errors in other devices (e.g.,
disk read retries).

In many cases, error detection and recovery mech-
anisms can mask the occurrence of transient errors.
However, on some systems, error detection and cor-
rection support may be missing (e.g., due to price-
sensitive marketing of commodity components) or
disabled (e.g., for reduced latency on communication
channels).

Non-recoverable hardware failures are exacerbated
by programming models with limited support for
fault-tolerance. For scientific applications, MPI [1] is
the most popular parallel programming model. How-
ever, the MPI standard does not specify mechanisms
or interfaces for fault-tolerance - normally, all of an
MPI application’s tasks are terminated when any of
the underlying nodes fails or becomes inaccessible.

In this paper, we examine the impact of soft errors
on MPI applications by injecting faults into regis-
ters, the process address space, and MPI messages to
simulate single-bit-flip errors. The remainder of this
paper is organized as follows. In §2, we outline the
rationale for fault assessment of commodity hardware
and consider the common failure modes in memory
and communication systems. This is followed by a
description of our fault injection methodology in §3
and our experimental environment in §4. In §5, we
describe the application suite and experimental re-
sults, followed by an overall assessment in §6 and §7.
Finally, we discuss related work in §8 and conclude
by summarizing results and future directions in §9.
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2 COTS Failure Modes

The price/performance advantage of commercial off-
the shelf (COTS) components has led many groups to
assemble clusters containing thousands of nodes. Be-
cause the COTS market is very price sensitive, there
is great pressure on manufacturers to eliminate any
features not necessary for the intended, commodity
market. For example, error correcting memory is
not used on many consumer PCs, nor are these sys-
tems subject to the same level of quality assurance
as systems intended for mission critical commercial
or scientific domains. Even when the individual sys-
tems are well engineered, the multiplicative coupling
of large numbers of components can lead to low reli-
ability for the aggregate.

As a motivating example, consider the Los Alamos
ASCI Q system, with 33 TB of error correcting
(ECC) memory. If one assumes one error every ten
days for each 1 GB of memory and a 95 percent
ECC coverage rate (see §2.1), the soft error rate is
33, 000× 0.05 or roughly 1,650 errors every ten days.
If even some of these errors corrupt an application’s
data space or message payloads, then an application’s
outputs may be incorrect.

The Los Alamos Q system is constructed from high
quality components, in contrast to those used to as-
semble many low cost, laboratory clusters. Hence,
as low-cost COTS hardware becomes the standard
building block, it is crucial that we understand the
balance of component reliability and price relative to
system reliability and application usability. In this
light, we review the possible failure modes and prob-
abilities for memory and message transmission, as a
prelude to experimental analysis.

2.1 Memory Errors

In an analysis of system logs from workstation clus-
ters, Lin and Siewiorek [2] reported that 90 percent
of the crashes were due to soft memory errors. In
practice, a single soft memory error rarely causes a
system crash, unless it strikes a critical memory re-
gion at right time. Hence, the actual frequency of
soft errors is higher than that detected – most have
no detectable effect.

Improved manufacturing processes and designs and
have continued to reduce the hard error rate (HER)
for memory modules. Recent estimates range from
a mean time before failure (MTBF) of 1,100 years
for a 32 Mb DRAM [3] to between 159-713 years for
16 and 64 Mb DRAMs [4, 5]. Overall, the HER has
remained roughly constant as memory densities have
increased [3].

On the other hand, shrinking geometries, lower
voltages, and higher clock frequencies contribute to
the growing occurrence of soft errors – the associated
decrease in noise margins increases signal sensitivity
to transients. Intel reported that the soft error rate
for SRAMs increased thirty fold when the process
technology shifted from 0.25 to 0.18 micron features
and the supply voltage dropped from 2 V to 1.6 V
[3].

Soft errors can also arise due to environmental con-
ditions. Poor power regulation and brownouts can
induce soft errors because memory cells may not re-
ceive enough power to be refreshed. Cosmic rays can
also lead to single bit upsets, particularly for systems
located at high altitudes. IBM showed that the soft
error rate in Denver was ten times higher than that
at sea level [6]

Given these diverse conditions, the observed soft
error rate (SER) can differ by as much as two orders
of magnitude, based on manufacturing process and
environmental conditions. Actel [7] reported that the
SER for every Mb of memory manufactured using a
0.13 micron process technology was roughly MTBF
of 1-10 years. Tezzaron Semiconductor [8] surveyed
recently published data on SER values and concluded
that 1000 to 5000 FIT (Failure-In-Time; the number
of failures in a billion hours) per Mb was typical for
modern memory devices. However, even using a con-
servative soft error rate (500 FIT/Mb), a system with
1 GB of RAM can expect a soft error every 10 days.

Historically, parity and error correction codes
(ECC) have been the primary protection against
memory soft errors. SECDEC (Single-Error-
Correction, Double-Errors-Detection) is the standard
approach, with every 64 data bits protected by a set
of 8 check bits. However, ECC does not eliminate all
soft errors. Compaq reported that roughly 10 percent
of errors are not caught by the on-chip ECC [9].

A hardware-based fault injection experiment by
Constantinescu [10] showed that 18 percent of er-
rors are uncovered by ECC memory. Moreover, ECC
memory solutions generally require 20 percent more
die area to fabricate, cost 10-25 percent more, and
reduce memory performance by 3-4 percent [8, 11].
In a price sensitive consumer market, these marginal
costs are substantial, and many vendors omit these
features on consumer-grade products. Therefore, soft
memory errors will still be an inevitable reliability
problem for future COTS clusters.

2.2 Communication Errors

On parallel systems, transient errors can also occur
when transmitting messages. Although the MPI 1.1

2



standard [1] specifies that it is MPI implementor’s
responsibility to insulate the user from the unrelia-
bility of underlying communication fabric, most MPI
implementations assume the underlying communica-
tion substrate (e.g., TCP/IP or Myrinet [12]) handles
all reliability issues.

However, library or operating system managed
end-to-end communication reliability is not without
cost – communication latency increases with each
software-mediated verification. Indeed, OS-bypass
mechanisms, with direct access to network inter-
face cards, were introduced precisely to reduce buffer
copying, context switch and interrupt handling over-
head [13]. In such situations, message data in-
tegrity is dependent on hardware-implemented, link-
level checksums.

Stone and Patridge [14] show that link-level check-
sums are insufficient to detect errors in message. In
theory, the chance that link-level checksums do not
catch errors should be as small as 1 out of 4 billion
packets. After analysis of a trace of 500,000 Ether-
net packets that failed TCP’s 16-bit checksum, Stone
and Patridge found a much higher fraction (1 out of
1,100 to 32,000) should also be caught by link-level
checksums but did not.

The source of the errors proved to be host hard-
ware, host software, router memory and links. In-
deed, network hardware have been reported to be
increasingly susceptible to soft errors [15]. For long-
running, communication-intensive codes on large sys-
tems, even a small link error rate can have serious
implications for application reliability.

3 Experimental Methodology

Given the importance of soft errors for both mem-
ory and communication systems, we used fault injec-
tion techniques to study MPI application responses
to transient faults. Fault injection can be either
hardware-based or software-based [16]. Each has as-
sociated advantages and disadvantages.

Hardware fault injection techniques range from
subjecting chips to heavy ion radiation to simulate
the effects of alpha particles to inserting a socket be-
tween the target chip and the circuit board to sim-
ulate stuck-at (e.g., always 0 or 1), open, or more
complex logic faults. Although effective, the cost of
these techniques is high relative to the components
being tested.

In contrast, software-implemented fault injection
(SWIFI) does not require expensive equipment and
can target specific software components, such as the
operating system, software libraries or applications.

Therefore, we chose the cost-effective SWIFI to simu-
late transient errors in memory and messages during
runtime. Below we describe our memory and message
fault injection models.

3.1 Software Environment

Our experimental target was Intel x86 systems run-
ning Linux 2.4, with the MPICH library [17] as the
MPI communication toolkit. Software error injection
targeted both registers and the application’s address
space, but not the MPI libraries. The latter was in-
tended to maximize the independence of our results
from a specific MPI implementation.

To inject faults, we linked the target applications
with a custom fault injection library containing MPI
wrapper functions. Each wrapper performs fault in-
jection tasks and then calls the actual MPI function
via the MPI profiling interface (PMPI).

int MPI_Init( int * argc,char *** argv) {

<performs some fault injection tasks>

PMPI_Init(argc, argv);

}

Our MPI Init() wrapper, shown above, parses a
configuration file and spawns the memory fault in-
jector. The fault injector awakens periodically and
invokes the ptrace() UNIX system call to halt the
target process and overwrite target process memory
or register content to simulate the effect of transient
errors. The target process is then allowed to resume
execution and its reaction to faults is recorded.

3.2 Memory Fault Injection

Memory fault injection targeted both registers and
applicaton memory regions. All registers (including
regular and x87 floating-point ones) were targeted ex-
cept the following: system control (CR0-CR4), debug
and performance monitoring (DR0-DR7 and MSRs)
and virtual memory management (GDTR, LDTR,
IDTR, and TR). Modifications to these registers can
cause system crashes, complicating application exper-
iments. We also omitted the TLB and the L1 and L2
caches. Modifying the latter would have required a
kernel implementation, something we sought to avoid
for platform portability.

As we noted above, the memory region where we
injected faults was confined to the address space of an
MPI process: the text, stack and heap, as shown in
Figure 1. We excluded other portions of the memory
because we wanted our results to be independent of
the execution context, and we wanted to maximize
the probability of application error effects. Injecting
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transient faults into unused memory has little effect
on applications.

To selectively inject faults into a user application’s
context and not the MPI library, our fault injector
employs different techniques for different regions in
the address space.

Text, Data and BSS. The identity and location
of text, data and BSS memory objects are determined
at compile time and are static. To separate the MPI
library’s memory objects from the user application’s,
we processed the library and application binaries to
retrieve the respective lists of {symbolic name, ad-
dress} pairs. We then constructed a fault dictionary
containing several thousand addresses randomly se-
lected from this list. Any address whose associated
symbolic name also appears in the MPI library’s list
was removed as a possible injection point.

Heap. The heap stores data structures whose
memory is dynamically allocated at runtime (i.e., by
malloc, realloc and free in C and similar calls
in C++). To identify the heap area allocated with
the MPI library, we implemented a customized mem-
ory allocator that wraps the standard malloc using
the GNU C library’s “memory allocation hooks.” By
pointing a hook function at a user-defined function,
we could change the behavior of the default malloc.

For example, our malloc wrapper invokes the GNU
C library’s malloc to allocate eight bytes more than
the caller requested. These extra eight bytes, set by
our malloc wrapper, store a 32-bit string (an iden-
tifier) and the size of the allocated memory chunk.
The identifier indicates whether a memory chunk is
allocated by the user application or the MPI library.

At entry to an MPI routine, a flag is set, and on
exit, the flag is unset. Depending on the flag sta-

tus, the malloc wrapper marks the allocated memory
chunk as user or MPI. When the injector seeks to trig-
ger a fault in the heap, starting at a random address,
the injector looks for any memory chunk marked as
user. Once located, a random bit in the chunk is
flipped.

Stack. Like the heap, the stack also resizes dy-
namically. In the Intel x86 architecture, the stack is
composed of stack frames. Each function call pushes
a frame onto stack, and each return pops a frame.
Each frame contains saved registers, arguments, lo-
cal variables, return address, and a pointer to the
next frame.

The stack frames in use by an application can be
identified by a walk-through from the top to bottom
frames (using the EBP and ESP registers) and by ex-
amination of the “return address” field in each frame.
If the return address falls within user application’s
text region, then the frame immediately below is in
user application’s context and is subject to our fault
injection.

3.3 Message Fault Injection

For MPI message injections, we modified the payload
received immediately from the underlying communi-
cation software, as shown in Figure 2. MPICH is im-
plemented in three layers: (a) API, which connects
the MPICH library to the user application, (b) ADI
(Abstract Device Interface), which implements MPI
functionality at a network-independent level and (c)
Channel, which is the interface between MPICH and
the underlying network-specific communication soft-
ware.

We configured MPICH to use the ch p4 channel
and injected faults at the Channel level. We chose
to inject the faults into incoming traffic immediately
after MPICH invokes the recv socket routine. Al-
though TCP/IP checksums, coupled with link-level
CRCs, are very effective in preventing data corrup-
tion, our purpose was to simulate the effects of soft
errors that are undetected in the transmission path
when only a link-level CRC is present.

In reality, message errors can also originate from
network hardware or operating systems. However, in-
jecting faults there either requires special equipment
or can cause instability. The fault injection process
will also be more time consuming; after each injec-
tion, the system must be rebooted to restore to a
clean state. Because the systems on which we con-
ducted tests are also used by others, operating system
fault injection was eliminated.

Before performing message injections, we profiled
the application to estimate the total message volume
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received by each MPI process during the execution.
During each injection experiment, we generated a
uniform random number in this range. The modi-
fied MPICH library maintains a counter on received
message volume and overwrites the payload when the
counter value coincides with the random number.

4 Experimental Environment

The hardware experimental environment is a meta-
cluster formed from two Linux PC clusters. The first
cluster (Rhapsody) has 32 nodes connected by both
10/100 and Gigabit Ethernet. Each node has dual
930 MHz Pentium III processors and 1 GB of DRAM.
The second, older cluster (Symphony) has 16 nodes
connected by Ethernet and Myrinet; each node has
dual 500 MHz Pentium II processors and 512 MB of
RAM.

4.1 Test Applications

We used three scientific codes as test applications:
Cactus Wavetoy [18], NAMD [19] and CAM [20].
Each of these codes is in use by computational scien-
tists on a daily basis. To reduce the time needed to
conduct experiments to tractable levels, we modified
each application’s input parameters such that each
executed for only for 2-5 minutes.

However, we ensured that each application execu-
tive several phases (i.e. loop iterations or time steps),
as would be typical of normal execution. Despite
these parameter modifications, the injection experi-
ment consumed two months of time on the two target
clusters.

4.2 Application Profiles

We profiled three test applications to quantify their
memory use and communication frequency and vol-
ume. The purpose of profiling was to provide a base-
line for interpreting the experimental results and to
explain the error behavior. Table 1 shows the per-
process application profiles.

For memory, we used the objdump and nm UNIX
utilities to obtain the sizes of the text, data and BSS
sections. We also used the malloc wrapper men-
tioned in §3.2 to obtain the heap size. For each of the
three applications, the heap grows until it reaches a
stable point, with limited variation about this fixed
value. In Table 1, we reported this stable size. The
stack size varied between 5-10 KB for all three appli-
cations.

For messages, we modified the MPICH library to
measure and classify the incoming traffic at the Chan-
nel and ADI levels; see §3.3 and Figure 2. At these
two levels, two kinds of messages are generated: con-
trol and data; both have 32-64 bytes of header. A
control message only contains the header, because all
control information is embedded within the header.
A data message contains both header and payload.
The payload carries the user data passed from MPI
calls. As Table 1 shows, Wavetoy and NAMD exhibit
one type of behavior, with the majority of the mes-
sages transmitting data. In contrast, CAM is domi-
nated by control messages.

4.2.1 Cactus Wavetoy

Cactus [18] is a modular toolkit for developing sci-
entific codes. Wavetoy is a test program from the
Cactus package that solves hyperbolic PDEs. For
our fault injection experiments, we used a problem
size of 150x150x150 and 100 steps. At the end of an
execution, the process of rank 0 writes the applica-
tion results to output files in plain text format. For
each execution, Wavetoy spawns 196 MPI processes,
each processor serves two MPI processes, and the ap-
plication executes for just under one minute.

4.2.2 NAMD

NAMD [19] is a parallel molecular dynamics code
designed for high-performance simulation of large
biomolecular systems. NAMD is based on Charm++,
an object-oriented parallel programming library [21].
In our tests, we used NAMD version 2.5b2 and config-
ured Charm++ to use MPICH for message passing.
Thus, Charm++ is considered a part of the user ap-
plication, and it is subjected to fault injection.

5



Cactus Wavetoy NAMD CAM
Memory (MB) 1.1 25-30 80
Text Size 0.3 2 2
Data Size 0.13 0.11 32
BSS Size � 0.1 0.6 38
Heap Size 0.45-0.5 22-27 8
Message (MB) 2.4-4.8 13-33 125-150
Distribution Header User Header User Header User
Percentage 6 94 8 92 63 37

Table 1: Per-Process Profiles of Test Applications

Errors Error Manifestations (Percent)
Region Executions (Percent) Crash Hang Incorrect
Regular Reg. 508 62.8 44 56
FP Reg. 500 4.0 50 50
BSS 502 6.2 19 81
Data 500 2.4 50 50
Stack 980 12.7 65 35
Text 1000 6.7 73 18 9
Heap 933 5.0 8 72 20
Message 2000 3.1 26 42 32

Table 2: Fault Injection Results (Cactus Wavetoy)

We used a 92,000 atom “apoa1” input problem,
whose data size was 20 MB. Each NAMD execution
spawned 96 MPI processes and executed for 2.8 min-
utes.

As a baseline for output comparison, we used the
NAMD console output, which shows total energies,
temperature and pressures at each time step. In
NAMD, each MPI process holds a portion of the in-
put set of atoms. Each time step updates the atoms’
positions and velocities. However, the order that
these updates occur depends on the MPI message ar-
rival order.

As such, NAMD executions are nondeterministic,
and the output files can differ across executions. The
only reproducible output is the console output, which
has no noticeable deviation if the number of steps is
less than 20, which we used in our experiments.

4.2.3 CAM

The Community Atmosphere Model (CAM) [20] is
the atmospheric component of a larger, global cli-
mate simulation package called CCSM, the Commu-
nity Climate System Model. In our experiments, we
used CAM version 2.0.2 with the default test data
sets and initial condition files as input, totalling 96

MB.
Each CAM execution used 64 MPI processes. The

input data specified 24 hours of simulated time and
took 4 minutes of execution to complete. The 76 MB
of output is written to disk by the process of rank 0
at the end.

4.3 Fault Sampling

We used sampling theory to determine the number
of injections used in the experiments. The fault in-
jection space has three axes: the bit in the mem-
ory/register file or message payload, the particular
MPI process and the injection time. If we denote
each axis by b, m, and t, respectively, the size of this
space is b×m× t.

The range of bit targets, b, ranges from 512 (six-
teen 32-bit registers) to 150 × 106 × 8 ≈ 109 (total
message volume) In turn, m, the MPI process iden-
tifier, ranged from 64-192 for our experimental envi-
ronment. Each of our test applications executed for
a few minutes, so t lies between 120 and 300.

In total, the injection space is at least 512 × 64 ×
120 ≈ 3.9 × 106. With constraints on the time one
can devote to experiments, it is impossible to inject
faults at each point in this space. As such, we used
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Errors Error Manifestations (Percent)
Region Executions (Percent) Crash Hang Incorrect App Detected MPI Detected
Regular Reg. 498 38.5 86 10 4
FP Reg. 500 7.6 39 11 3 47
BSS 497 1.8 78 22
Data 502 4.2 95 5
Stack 493 9.3 74 13 6 6
Text 498 8.4 79 7 7 7
Heap 500 5.2 81 8 8 3
Message 500 38.0 26 28 46

Table 3: Fault Injection Results (NAMD)

Errors Error Manifestations (Percent)
Region Executions (Percent) Crash Hang Incorrect App Detected MPI Detected
Regular Reg. 500 41.8 68 26 5 1
FP Reg. 422 8.0 33 15 26 26
BSS 500 3.2 62 25 13
Data 500 2.8 50 50
Stack 500 6.2 71 10 13 6
Text 500 14.8 78 11 7 4
Heap 500 2.6 31 69
Message 500 24.2 21 4 71 3

Table 4: Fault Injection Results (CAM)

random sampling to choose a small number of points
as our injection targets.

Sampling theory defines a population of N elements
and a randomly drawn subset of the population called
a sample, with size n. From a sample, the goal is to
infer certain statistical properties of the population.
In the simplest case, each element of the population
belongs to either classes C1 or C2, Let P be the pro-
portion of C1 in the population and p be the propor-
tion of C1 in the sample. We want to estimate P from
p.

The quality of the estimate is determined by the
sample size n. It should be chosen such that the de-
sired confidence interval (1 − α) and the estimation
error d are satisfied. Here, α is the risk of not ob-
taining such a confidence interval. Mathematically,
we have

Pr(|P − p| < d) ≥ 1− α

That is, with at least 1 − α probability, p is not far-
ther from P than d. When N � n and assuming
p is normally distributed, an approximation for n to
achieve 1− α accuracy is [22]:

n ≥ P (1− P )(
zα/2

d
)2 (1)

where zα/2 is the double-tailed α-point of a standard
normal distribution. Note that the above formula is
independent of population size N .

However, in (1) the right hand side depends on P ,
which is exactly the statistical property we want to
estimate. This can be solved by oversampling [22],
that is, taking P = 0.5 to maximize the right-hand
side of (1). Therefore, our sample size becomes

n ≥ 0.25(
zα/2

d
)2

If the population is divided into k > 2 disjoint
classes C1, C2, . . ., Ck, the above equations still ap-
ply. If Pi and pi are the proportion of Ci in the pop-
ulation and sample, respectively, then we can replace
P and p in (1) by Pi and pi and get the same result.

In our application of sampling theory, the popula-
tion is the injection space and the classes represent
different error manifestations; see §5.1. For each of
the test applications, we performed 400-500 injections
in most regions. With a confidence interval of 95 per-
cent (i.e., α = 5% and zα/2 = 1.96) and using over-
sampling, the estimation error d is 4.4-4.9 percent.
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5 Experimental Results

We executed each of the three applications (Cactus,
NAMD and CAM) on our test clusters with the fault
injection methodology described in §3. From these
experiments, we calculated the error rate, which is
the ratio of manifestations to injected faults. For all
manifested faults, we also observed the error manifes-
tations and calculated the ratios of different manifes-
tations. Before analyzing the results, we summarize
the range of error manifestations.

5.1 Error Manifestations

If the injected fault does not manifest, we labeled the
outcome as correct. Otherwise, the induced errors
are categorized into several disjoint classes.

Crash. Application crashes were detected by
identifying MPICH error messages in the STDERR
output. MPICH handles all critical signals (e.g.,
SIGSEGV and SIGBUS) due to abnormal termina-
tion of both the user application and itself.

Hang. Because our experimental environment was
under our exclusive control, there was little variabil-
ity in execution times. Hence, for each application
execution, we waited for one minute beyond the ex-
pected execution completion time. If the application
did not complete during this time, we terminated the
application and labeled the outcome as an application
hang.

Application Detected. Some of the applications
in our suite implement internal consistency checks.
After a consistency failure, these applications print
error messages to console and abort. Therefore, by
examining the console output, we identified such er-
rors.

MPI Detected. The MPI 1.1 standard specifies
that by default, an error during the execution of an
MPI call causes the application to abort.1 However,
MPI provides mechanisms for users to handle recov-
erable errors by registering customized error handlers
via the MPI Errhandler set call. Therefore, we reg-
istered such a handler, and whenever the handler was
invoked, the handler labeled the outcome as “MPI
detected.”

Incorrect Output. After each execution, we
compared the application output against the correct
one to test for silent data corruption. We labeled the
outcome of an injection as incorrect if the user appli-
cation finishes execution without reporting an error,
but the output was incorrect. This is most dangerous

1As mentioned in §2.2, MPI assumes the underlying net-
work substrate is reliable, so the errors detectable by MPI con-
cern the user application execution. See §6.2 for more details.

of all possible errors because there is little sign during
the execution that can alert the user.

5.2 Results

Table 2 summarizes the results for Cactus Wavetoy.
During our tests, no Application Detected or MPI De-
tected errors were encountered. Table 3 and 4 show
the results for NAMD and CAM, respectively.

6 Failure Mode Analysis

Given the experimental data of §5, we turn to an
analysis of the commonalities and differences across
the three test applications. This is followed in §7,
by an assessment of the implications for application
design and system configuration.

6.1 Common Behaviors

6.1.1 Register Injections

Even a cursory examination of Tables 2-4 shows that
the regular (integer) registers are the most vulnerable
to transient errors, with an error rate ranging from
38.5 to 62.8 percent. Because the Intel x86 architec-
ture has less than a dozen general-purpose registers,
most contain live data at any given time. Single bit
upsets in these registers are very likely to affect ap-
plication behavior.

These effects are strongly dependent, however, on
the quality of live register allocation and management
(a function of the compiler) and the size of the regis-
ter file. One would expect different sensitivity on sys-
tems with a larger register file. For example, Springer
[23] investigated the register usage of an image pro-
cessing kernel on a PowerPC 750 system and found
that only 4-5 of 64 available registers were used dur-
ing execution. If the code were compiled with the op-
timization switch -O, then the number of live registers
jumped to 14-15. The suggests that a program could
be made more robust if it is compiled without register
optimizations, albeit with possible performance loss.

The error rate for floating-point register fault in-
jection is much lower than that for integer registers,
with only a 4-8 percent error rate. The main reason
is not all floating-point registers are accessed, or the
faults are overwritten before being accessed.

The Intel x87 FPU has seven special-purpose regis-
ters (CWD, SWD, TWD, FIP, FCS, FOO, and FOS)
and eight FPU data registers, which are placeholders
for floating-point numbers [24]. We found that most
special-purpose register injections did not induce er-
rors, except for the TWD register, which will possibly
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cause NaN (Not a Number) errors. The TWD (tag
word) register indicates the content of each of the
eight FPU data registers. The content can be a valid
number, zero, special (NaN, infinity, or denormal,)
or empty. Changing one bit can turn a valid number
into NaN or zero.

The x87 FPU instructions treat the FPU data reg-
isters as a register stack, which is addressed relative
to the register atop the stack. To understand the ef-
fects of code generation on fault manifestation, we ex-
amined the assembly code generated by the compilers
and found that the generated x87 FPU instructions
generally use only four of the registers in the stack.

Finally, because the FPU data registers are 80 bits
long, based on the IEEE floating point standard,
some bits are discarded when the value in FPU data
register is written to memory. When combined, these
factors can cause the low observed error rates.

6.1.2 Memory Injections

The error rates for memory injections were consis-
tently low, generally less than 10 percent, across the
three applications. Table 1 also suggests that the er-
ror rate is largely independent of memory region size.
For example, the data section sizes range widely from
130 KB to 38 MB, yet the error rates vary only be-
tween 2.4 and 4.2 percent.

Given temporal and spatial locality, we conjectured
that either most of the memory is never accessed (i.e.
faults are not within the spatial locality), or the faults
are injected into memory locations that will not be
accessed again or will be overwritten before accessed
(i.e. faults are not within the temporal locality.)

To verify this conjecture, we used the open-source
memory debugging tool Valgrind [25] to trace the
memory accesses of the three applications. Valgrind
works directly on executable binaries and can instru-
ment each x86 instruction. We used Valgrind to col-
lect the following run-time memory access data: text
accesses, which are executed instructions, and data
accesses, which are memory loads in Data, BSS, and
Heap sections.2 We recorded snapshots of text and
data accesses periodically to understand temporal
and spatial locality and their relation to error rates.

Tables 5–7 show the results of these measurements.
The memory address shown is the address relative
to the beginning of the respective sections. Due to
instrumentation overhead, the applications run 2 to
5 times slower than normal. To establish a consistent

2For measurement simplicity, this data is drawn from in-
strumentation of a randomly selected MPI process, with the
application executed on a smaller number of processors. Given
the characteristics of our application suite, we believe this data
is representative.

time frame across executions, we used the basic block
count to measure the elapsed time.

Because injecting faults into unused memory has no
effect, it is crucial to identify how much memory is
actually accessed. To estimate this, we calculated the
working set size, where the “working set size at time
t” is the size of accessed memory since t. The working
set size, therefore, is a non-increasing function of t.
To relate the error rate with the working set size, we
plotted the percentage of working set size relative to
the respective section sizes in Tables 5–7.

Based on this data, the following observations are
apt. First, all three applications exhibit phase behav-
ior in their memory accesses: the initialization phase
and the computation phase. The phase shift occurs
when there is a large drop in working set size be-
cause the working set has moved from startup code
to the computation kernel (spatial locality). During
the computation phase, memory accesses are very pe-
riodic and regular (temporal locality), and the work-
ing set remains unchanged.

Second, the working set size plots suggest the cause
of the low error rate from fault injections. For the
text section, the working set size at time 0 is 30 per-
cent for Cactus and CAM and 15 percent for NAMD.
Entering the computation phase, the working set size
declines to 10, 8 and 13 percent for Cactus, NAMD,
and CAM, respectively. Compared to the text injec-
tion error rates, which are 6.7, 8.4, and 14.8 percent,
the small working set size is the cause of the low er-
ror rates. Our results are consistent with [23], where
only a fraction of the heap was found to be used.

The working set analysis also shows that most
memory in the Data, BSS, and Heap area is either
not accessed at all or is not accessed after the ini-
tialization phase. At time 0, the Data+BSS+Heap
working set size is 28, 60, and 19 percent for Cac-
tus, NAMD, and CAM, respectively. During the
computation phase, this size drops to only 12, 22,
and 16 percent. A close look at the Data and BSS
sections shows that their working sets are usually
even smaller, mostly less than 10 percent. These re-
sults strongly correlate with the low error rates in
Data+BSS+Heap injections.

Unlike the text section, the working set alone
cannot completely explain the error rates for
Data+BSS+Heap injections; the text is read-only,
whereas Data+BSS+Heap can have many interleav-
ing writes and reads. Although we did not record
the most recent write to each memory location before
read, we conjecture that a corrupted memory cell is
overwritten by the application before it is loaded and
used again. In addition, a bit error in the instruction
opcode can alter the instruction and halt the execu-
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tion, whereas a bit error in the data could be more
innocuous. We believe this can also lead to low error
rates in Data, BSS, and Heap areas.

6.2 Application Differences

In addition to similarities, there were also substan-
tial differences in application behaviors and sensitiv-
ities to injected faults. First, both NAMD and CAM
include internal consistency checks for NaN (Not a
Number) for some key variables. Both codes reported
many NaN errors as a consequences of our injecting
faults into the floating-point registers.

When an error occurs, the tests within NAMD and
CAM detect them with 47 percent and 26 percent
probability, respectively; see Tables 3–4. After de-
tecting NaN errors, both applications abort. In addi-
tion, both NAMD and CAM use sanity/bound checks
and assertions on certain data structures to capture a
fraction (3-7 percent and 4-13 percent, respectively)
of faults that manifest in the Data, Text, Heap and
Stack areas.

For example, in CAM, any moisture value below a
minimum threshold can trigger a warning and abort
the application. Although these tests still capture
less than half of all injected errors, they highlight
the critical importance of internal consistency checks
when executing in environments where hardware er-
rors may occur.

Both NAMD and CAM are quite sensitive to errors
injected into message payloads, with 38 and 24 per-
cent error rates, respectively. However, NAMD can
detect 46 percent of these errors, while CAM only
detect three percent of them. As with floating point
errors, we attribute NAMD’s high detection rate to
its built-in message consistency checks3, which CAM
lacks. An instrumentation of NAMD code shows that
these internal checks increases the execution time by
three percent, but can detect many errors.

We also observed a few “MPI Detected” error man-
ifestations for NAMD and CAM. All were associated
with memory errors in the stack contents. Recall
that MPI allows the user application to register error
handler callback functions. However, in MPICH, the
callback is triggered only when incorrect arguments
are passed to MPI routines (e.g., a non-existent des-
tination specified for a send operation). Stack error
injections trigger such errors because the stack holds
the arguments to function calls. Other errors, such as
abnormal termination of an MPI process due to fault
injection, do not trigger the error handler. Instead,

3These checks are implemented inside NAMD, not
Charm++.

MPICH itself will abort the user application, which
we labeled as an application Crash.

The MPI 1.1 standard gives implementors consid-
erable liberty concerning those errors that can raise
the error handler. To assess alternatives, we exam-
ined the source code for two other popular MPI 1.1
implementations, LAM/MPI [26] and LA-MPI [27].
We found that they also only raise the user-registered
error handler when argument checks fail. Abnormal
termination of peer MPI processes will abort the ap-
plication without invoking the error handler, just as
MPICH does.

In Cactus, only 3.1 percent of the perturbed mes-
sage payloads have an adverse effect, which is much
lower than NAMD can CAM. To understand this dif-
ference, we correlated Cactus’s low perturbation with
MPICH traffic structure, Cactus’s message passing
behavior and Cactus’s output format.

Recall from §4.2 that MPICH traffic can be roughly
classified as header and user data. For Cactus, 94
percent of its incoming MPI traffic is user data and
6 percent consisted of headers only. A substantial
fraction of Cactus data transfers are large arrays of
floating-point numbers, whose perturbation does not
crash or hang the application; rather, these errors are
manifest in other ways. In contrast, perturbing the
headers has about a 40 percent probability of corrupt-
ing the Cactus execution. Therefore, the combined
Crash and Hang rate is 6*0.4 or roughly 2.4 percent.

Because user data is the majority of Cactus mes-
sage traffic, message fault injection should induce
many cases of incorrect output. However, we found
experimentally that this was not true. The reason
is the output data representation. As mentioned in
§4.2.1, we configured Cactus Wavetoy to write its out-
put textually, which has the advantage of portability.
Platform differences such as byte order are avoided.
However, for Cactus Wavetoy, it hides small changes
in low order decimal digits.

A detailed examination of Cactus message data
showed that most transferred data are very close to
zero. Only when faults occur in the significant bits
of the exponent or mantissa will the output be in-
correct. We also noted that executing more Cactus
Wavetoy iterations will almost always yield incorrect
outputs (i.e. the error amplifies as the computation
continues). A binary output format would detect
more cases of incorrect output.

7 Implications

From our experiments, one can draw several con-
clusions. First and most importantly, soft bit er-
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rors can dramatically and adversely affect application
reliability on commodity parallel systems. Without
hardware checksums, ECC memory and application-
specific error checking, soft errors, particularly on
large systems, will trigger application crashes, hangs
or incorrect results.

The definition of correctness is also often appli-
cation specific, and different definitions could lead
to different error manifestation results. For Cactus
Wavetoy, results presented in plain-text format have
lower precision and can mask some injected faults. In
turn, NAMD execution is nondeterministic, making
error identification difficult. The distinction between
memory fault induced errors and small variations due
to numerical roundoff are subtle and difficult to de-
tect.

A considerable fraction of the induced errors lead
to execution modes that do not terminate. Although
determining if an execution will terminate is unde-
cidable, simple progress metrics (e.g., FLOPS, mes-
sages per second or loop iterations per minute) can
provide some practical detection mechanisms. If the
application’s performance drops below a user-defined
threshold, it is very likely that the code is in a non-
terminating mode.

In detecting communication errors, NAMD’s mes-
sage checksum is effective at low cost – only three
percent overhead. However, NAMD’s checksum only
tests user data, not headers, which can only be ob-
served inside the MPI library. As Table 1 shows, each
NAMD process receives 13-33 MB of data during 2.8
minutes of execution. If an application transfers a
larger volume of user data per unit time, the over-
head for application-level message checksums can rise
substantially.

Program assertions and sanity/consistency checks
are usually used for debugging and are removed in
production code. In our experiments, a fraction of
injected faults are captured by these checks. Use of
internal checks is an important aspect of robust ap-
plication implementation, but must be used wisely
because excessive checks can still harm performance.

8 Related Work

There is a long and rich history of fault tolerance
studies, ranging from hardware assessment though
software measurement to algorithm-based fault toler-
ance. Below, we review representative work in related
areas.

8.1 Fault Injection into Parallel Codes

In an early study of distributed memory parallel sys-
tems, Carreira et al [28] injected faults into the com-
munication system of the T805 Transputer to study
their impact on parallel applications. They used a
kernel-mode fault injector and found that 5-30 per-
cent of the injected faults caused the application to
generate incorrect results. Mirroring our experience,
bit errors in message packet headers almost always
caused the applications to fail.

More recently, Constantinescu [10] used hardware-
based fault injection to assess the reliability of the
9,000-processor ASCI Red system, which has ECC
memory, parity, protocol checking, watchdog timers
and message checksums to ensure data integrity. The
injected faults were stuck-at-0/1’s using a hardware
probe at the IC pin level. During the fault exper-
iments, the processors executed the Linpack bench-
mark, and the results were verified at the end of every
iteration. Overall, Constantinescu found the error
detection rate on the compute nodes was 80-84 per-
cent, though error detection was dependent on the
fault duration. Transients proved more difficult to
detect, whereas longer faults led to application fail-
ures (hangs).

Our work differs in its use of a cost-effective user-
mode software fault injector. We also used a suite
of scientific codes and a large number of processes
(64-192) to simulate a mid-sized cluster environment.
We also used commodity Linux clusters and the MPI
communication library, the de facto standard for par-
allel programming.

8.2 Software Solutions to Soft Errors

Many software-based reliability techniques have been
developed to handle soft errors. To handle memory
errors the text regions of application code, control-
flow checking can monitor branches to determine if
they deviate from a pre-generated control-flow signa-
ture [29]. Simultaneous multithreading (SMT) has
also been exploited; two threads execute the same
code, with one running slightly ahead of another. The
trailing thread compares the values produced by both
and triggers an error if there is mismatch [30].

In general, result checking and self-correction [31]
seek efficient result checkers or correctors by exploit-
ing program structure. Algorithm-based fault toler-
ance (ABFT) [32] techniques exploit the algorithmic
structure of codes to create efficient, domain-specific
detection schemes. Silva [33] reports that ABFT can
detect almost all injected faults with only a ten per-
cent performance penalty.
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In some cases, one can exploit naturally fault toler-
ant algorithms [34] whose outputs are resilient to per-
turbation during the calculations. For example, itera-
tive algorithms for solving systems of linear equations
use successive approximations to obtain more accu-
rate solutions at each step. A small error or lost data
only slow convergence rather than leading to wrong
results [35].

9 Conclusions

With increasing use of COTS components to con-
struct large parallel systems, it is crucial that we
understand the interplay of hardware component re-
liability and parallel application execution. Even a
small chance of memory errors or communication er-
rors can lead to application crashes, hangs or wrong
outputs.

In this paper, we examined the impact of soft mem-
ory and message errors on MPI codes. We performed
thousands of injections into registers, process address
space, and MPI messages to simulate single-bit-flip
errors. We found that registers and messages are
particularly vulnerable to single-bit-flip faults, with
an average 34.7 percent of fault manifestation rate.
When a message fault manifests, the chance of pro-
ducing an wrong output can be quite high, ranging
from 28 to 71 percent for the three codes in our tests.

Application assertions and internal consistency
checks can detect some of these errors, albeit at the
expense of additional execution time. The MPI 1.1
library only supports very minimal error detection
and recovery. Based on these results, we believe there
should be a serious effort to redesign or enhance par-
allel applications and communication libraries with a
renewed emphasis on fault tolerance, such that these
applications can run successfully on large systems.
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