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Abstract—We believe that new smartphone architectures like
Android and iOS will play increasingly important roles in sensor
network design. Because of this, we wish to investigate the state
of development for sensor network-based applications on the
Android framework. We introduce an application for Android
that allows for the semi-autonomous remote control of Rovio
robots. It coordinates with a sensor network of cameras to
provide a live stream of camera images and predicted robot
locations. Furthermore, it provides functionality for moving the
robot to user-selected destinations without the need for manual
control. The application acts as a straw man for working with
traditional sensor network architectures, and provides important
insight on some of the challenges related to sensor network
development, especially on the Android platform. We outline
these challenges and provide some suggestions on semantics that
could alleviate development effort.

I. INTRODUCTION

Sensor networks represent a rapidly growing field. But
despite extensive research and development, the design of such
systems provides a number of large challenges. As a result,
deployment tends to be expensive (sometimes prohibitively
so), and often requires significant engineering expertise. This
is particularly true for smart camera networks for which there
are no standard hardware or software platforms.

An example of such a distributed camera network is shown
in Figure 1. Each camera node is capable of communicating
with their neighbors in order to aggregate information. Infor-
mation may also be stored in a computer server which can be
used as a large database for tasks such as object recognition.
Besides static cameras, there are also mobile agents that can
communicate with the smart cameras in order to navigate
through the environment. Finally, users can interface with the
system through the use of computers or smart phone devices.

Due to the diverse range of environments (surveillance,
wildlife monitoring, search and rescue [1]) in which camera
networks are used, it is very important to have hardware
platforms that are reliable and resilient in hostile settings.
Several platforms have been developed, including CITRIC [2]
and DSPcam [3], among others. They vary in computational
and communication constraints due to limitations in battery
life or form factor.

The software end is in many ways even more problematic.
At a high level, if we consider the servers involved in collating
and processing data received from the sensors as part of the

Fig. 1. Camera Network System: Camera nodes are capable of communicat-
ing with each other; mobile nodes can be used to perform active tasks such
as exploration and navigation; a main server aggregates information from the
network and is also used as a database; and the user interfaces with the system
through the use of computers or smartphones.

architecture, then we oftentimes have non-trivial distributed
programming challenges that require careful coordination and
data synchronization. The server-end tends to handle clients
in parallel, further compounding coordination issues.

At a local level, sensors that communicate with each
other can randomly fail without warning. Sensors are usually
resource starved or constrained on networking capabilities.
Furthermore, testing the architecture can be expensive and time
consuming.

Sensor networks also suffer from what we call the patch-
work problem: because the needs of sensors and the servers
that process their data are so different, disparate technologies
are used, and nodes oftentimes communicate with each other
through custom-made protocols that can be bug ridden and
expensive to develop.

The rise of powerful mobile phone platforms like Android
and iOS introduces an escape from some of these problems:

1) Mobile phone platforms tend to be widely available, as
economies of scale drive their prices down.

2) Their hardware and software systems are much more
homogeneous in nature than most sensor network archi-
tectures as a whole.

3) They have built-in support for a number of sensor needs,
such as cameras and cellular radios.



Given these advantages, we expect mobile phones will be-
come common platforms in sensor networks. There is already
some active experimentation with the use of mobile phones
in sensor networks, such as CitiSense, which proposes the
concept of “citizen infrastructure” [4], or the employment of
crowd sourcing techniques to gather data points across a large
area.

Android and iOS devices are much more powerful than prior
generations of embedded systems, and current projections
indicate these systems will only become more capable in
the future [5]. The drawback of this is that many libraries
traditionally used for sensor networks are targeted at more
resource constrained environments. Some libraries further re-
quire the use of special environments, such as TinyDB’s need
for TinyOS [6]. As a result, these libraries cannot be used in
new mobile phones.

The contribution of this paper is the development of a
distributed camera network which incorporates a user interface
for Android devices. We outline some of the challenges we had
in developing sensor network software for the Android plat-
form, and how these challenges could be mitigated with new
libraries and semantics actively being researched by efforts
such as those from the Rapidly deployable, Robust, Real-time
Situational Awareness and Response (R3SAR) research project
[36], our effort to simplify sensor network design for mobile
platforms.

The rest of the paper is organized as follows: Methodology
gives an outline of our development process. System Overview
summarizes the current state of the camera network archi-
tecture and its Android interface. Findings lists the issues
we reached while developing the Android interface. Finally,
Future Work details the efforts being pursued by R3SAR, and
how they might mitigate the issues we had.

II. RELATED WORK

A few papers survey the landscape of sensor networks and
provide general criticisms and bodies of knowledge [7], [8],
[9].

TinyDB [6] and Tables [7] explore the use of relational
algebra as a communication paradigm between sensors and
servers.

We focus on Android as a smartphone platform for devel-
opment, although several others exist, including iOS [10] and
Blackberry OS [11], among others. MeeGo is another Linux-
based alternative, headed by Intel and Nokia [12].

Camera network has a number of related works, in the
areas of vision graphs, simplicial representations, activity
topologies and full metric models. These related works are
briefly outlined below. A more detailed taxonomy is provided
in [13].

Vision graphs ([14], [15], [16]) represent camera coverage
as vertices and coverage overlap between cameras as edges.
They do not provide geometric information on the nature of
the network coverage, e.g. holes in the coverage.

Simplicial representations ([17], [18], [19], [20]) improve
upon vision graphs by incorporating geometric information.

This work focuses on the detection and recovery of holes in
the coverage. Camera network’s CN-complex [13] builds on
simplicial representations.

Activity topologies ([21], [22], [23], [24]) identify specific
artifacts shared between several camera views. Contrast this
with Vision Graphs where entire camera views are compared
to establish overlap.

Full-metric models ([25], [26], [27], [28], [29]) determine
all geometric information about camera locations and finds
overlap between views so long as no objects are obstructing
the camera views. Otherwise, these objects must be located
for proper characterization. Full-metric models involve a non-
trivial amount of computation and tend not to be robust.

III. METHODOLOGY

In developing the application, we used the standard
toolchain recommended for Android development in order to
emulate a quintessential experience. Rather than experiment
with newer JVM-based languages that can target the Android
environment, such as Scala [30], we stuck to Java. For the
IDE, we used Eclipse.

While developing the application, we took note of any
common patterns in issues we met, and compared them with
general findings with sensor network development at the
Renaissance Computing Institute. These are documented in
the Findings section.

IV. SYSTEM OVERVIEW

In this section we go over the system that will be discussed
throughout the rest of the paper and the type of applications
that motivate our work.

A. The Physical Platform
A platform similar to the one described in Fig. 1 is con-

sidered. Camera nodes consist of USB cameras attached to
computers running the camera node server application. The
application provides a local GUI, and exposes an API for
remote clients to connect to. Both the API and application
provide access to the following:

1) Streaming updates of the camera’s view.
2) Information on the predicted robot location and orienta-

tion with respect to the streaming camera images.
3) The ability to move the robot. It can be moved to another

location with respect to the streaming camera images,
or to another camera’s field of view altogether. This
involves traditional motion planning challenges, with the
further issue of having to move the robot between the
views of cameras that might not have any overlap.

These nodes communicate to each other wirelessly through
the TCP/IP protocol.

The Rovio WowWee robot [31] is used as the target artifact.
Camera network devices track the robot and send commands
over a wireless connection to move it to appropriate locations.
The ability to move the robot and see through its onboard
webcam is also granted to any user logged into the WowWee
web interface.



A main server is setup which plays the role of a gateway.
It keeps track of the camera nodes that are active, the number
of mobile agents, and the users connected to the system.
The users are capable of connecting to the network by first
interfacing with the gateway which in turn provides all the
information needed (such as IP address and ports) for direct
communication with the camera nodes.

This system is setup to enable distributed navigation of the
robot across the area covered by the camera network. A user
can provide a request to move to a specific location in a given
camera view, and the distributed network handles the path
planning and local control components for the robot. The user
gets updates on the location of the robot in the network, as
well as feedback from the robot’s camera view. The motivation
of this setup is to be able to provide a camera system that can
be used for navigation and exploration.

B. User Interface
The Android based application starts with a view of the

topology of cameras (Fi. 2, left). The topology is displayed as
a graph, where the vertices are cameras and the edges indicate
overlap between two camera views. Because the views of the
cameras do not all overlap with one another, the graph is
incomplete. The Rovio should not move into areas that none of
the cameras can see, so the indication of edges are important:
they suggest how the robot can move from one camera’s view
to another. The topology also highlights the vertices for the
cameras that can currently see the Rovio.

Users can click any vertex within the topology to zoom
to that camera’s view. If the Rovio is within the view, the
application displays its predicated location and orientation
with a red line (Fig. 2, middle). Using touch gesture, a user
can order the Rovio to move to another location with a given
orientation, even if it is in the view of a camera different
than where it currently is. The server handles the task of
determining a safe path for the Rovio (where safe means the
entire path is visible to one or more cameras) and moving it
appropriately.

A third view provides a live stream of the Rovio’s camera
(Fig. 2, right). Fetching these images involves communicating
directly with the Rovio base station via HTTP.

V. FINDINGS

In this section, we discuss the problems we had developing
the application.

A. High cost
Overall, the application consists of 735 lines of Java code

and 87 lines of XML, not including comments and empty lines.
The sloccount tool [32] estimates that the application would
take 1.74 developer months to create, (using the COCOMO
model [33]) with a total development cost of $19,554. These
costs are extraordinarily high, especially given the fact that
this application is only one component in the greater sensor
network architecture. Development of sensor network software
on Android using traditional technologies could prove insur-
mountably expensive for some.

B. Difficulty in finding domain expertise

It is currently hard to find developers with experience in
Android given the relative newness of the platform. This is an
unavoidable consequence of working with a new technology,
and we anticipate this problem to alleviate itself in the future.

C. Incompleteness of documentation

Android has evolved rapidly since its inception. Many new
capabilities have been added, and a few have been removed or
deprecated. As a result, unofficial online documentation tends
to be outdated and sometimes completely incorrect. Official
documentation is better, although there is a large gap between
the introductory material and the detailed API documentation.
Additionally, methods and fields are often missing JavaDoc
descriptions.

Some of this has to do with the complexity of the Android
framework. Android’s idiomatic development language is Java.
In addition to the standard Java packages, Android provides
a number of other libraries that could prove useful to a
mobile application developer. This means that core Android
developers have to document a strikingly large code base.

An important point to note is that the vast majority of these
libraries are unnecessary for virtually all sensor network devel-
opers. This alone introduces huge opportunities for improving
productivity with Android sensor network development.

Overall, the problem with respect to documentation is
difficulty in determining the idiomatic way of doing things. For
example, there are several ways to update the user interface
based on information asynchronously received from the server.
Which method to use in different contexts is difficult to
discover.

D. Weak third-party libraries

We came across a serious problem while designing the
topology view: to our knowledge, there are no good frame-
works for drawing graphs in Android. This is especially true
for hypergraphs, which is how the server sends the topological
data. Some graph libraries do exist for Java, and technically
Android supports importing third-party libraries. However, the
process proved too troublesome. In the end, we wrote our own
drawing routine, which simply arranges the vertices around
a circle and changes the hypergraph connectivity to one of
an undirected graph. The difficulty in setting up a graph
library points to a larger problem: there are few libraries made
specifically for Android, and the process of importing third
party Java libraries is oftentimes more trouble than it is worth.

E. Development environment shortcomings

We used a standard Eclipse environment, as suggested in the
Android documentation. However, many of the developer tools
have a feeling of incompleteness to them. Furthermore, the
emulator runs the complete environment in a virtual machine.
This can give a feeling of sluggishness. The combination
of problems with development tools are acute enough to
discourage exploratory programming and rapid prototyping.



Fig. 2. Graphical Interface through Android Device: Topological view of cameras (left), Camera View with Rovio (middle) and View from Rovio (right).

Debug deployments of Android applications allow develop-
ers to watch system logs for important messages and catch
exceptions along with the suspended application state when
an application crashes. However, Android libraries tend not
to run assertion or contractual checks against objects as they
are passed around (perhaps for performance reasons). Conse-
quently, exceptions oftentimes occur because of an object that
was passed in at an entirely different time. The result is a
stack trace that involves nothing but Android code, providing
no indication of where the application could be supplying bad
input.

F. Dealing with multi-threaded logic

Because of the way that Android is designed, multi-threaded
code is an inevitable byproduct of non-trivial GUI applica-
tions. The drawbacks of this are all of the problems tradi-
tionally associated with multi-threaded code: synchronization,
race conditions, deadlocks, etc. This holds especially true
because Java has weak facilities for concurrency relative to
languages like Erlang [34]. Additionally, Android is heavily
event-oriented, which could have been greatly facilitated by
support in Java for closures (although anonymous classes
help). There is an in-progress JSR (Java Specification Request)
to add closures [35].

G. The patchwork problem

As mentioned in the introduction, the patchwork problem
is the common issue among sensor network architectures
wherein disparate technologies are used between sensors and
the systems that collate sensor data.

It is important to note that there are three separate compo-
nents in the camera network architecture beyond the Android
application:

1) The Rovio server - a web application and service for
getting sensor data from the Rovio and sending com-
mands to its actuators. This system is a black box in
that it is provided by the company that manufactures
Rovio (WowWee) [31] and cannot be modified.

2) The camera server - an application written in C++ that
runs on systems connected to one of the topological
cameras. It deals with fetching camera pictures and
provides high-level commands for, e.g. moving the
Rovio from a specific location in one camera’s view

to a specific location in another’s. These commands are
available through a TCP/IP based API.

3) The gateway - a server that distributes information to
clients about the overall network. This includes con-
nection settings to individual camera servers and data
on the overall camera topology as a hypergraph. It also
communicates with TCP/IP and is written in C++.

Getting these systems to communicate with one another
involves a lot of gratuitous glue code. The Android application
needs logic for fetching images via the Rovio server’s HTTP
API, and logic for communicating with the TCP/IP protocols
of the camera server and gateway. The latter proved to be
buggy, especially due to race conditions caused by camera
server having to communicate with multiple clients. Overall,
the patchwork architecture hampered development, and we
suspect camera network is not unique in this issue.

VI. FUTURE WORK

Our intention going forward is to use the aforementioned
issues we discovered to inform future research work. What
follows is a general outline of the things we are working
on in R3SAR [36], an investigation into high-level, high-
productivity programming models for sensor networks.

A. A standardized communication framework

First we wish to address the patchwork problem and deal-
ing with multi-threaded logic, which are likely the most
formidable challenges even among experienced developers. To
some extent, these issues will likely always exist; working
with distributed systems is inherently difficult. However proper
tooling and abstractions can alleviate some of the complexity.
We believe a standardized protocol for allowing disparate
technologies to communicate with one another in a distributed
setting would be hugely useful. This is what we are most
actively researching in R3SAR right now.

The protocol would have to take into account the fact that
sensor devices fail frequently, and their communication links
are often severed. It must also account for the need of servers
to handle connections in parallel. All of this must be done
efficiently, because sensor devices are often constrained on
networking resources.

Prior attempts at standardizing such communication have
often focused on the use of the relational paradigm combined



with the implicit determination of where to perform collating
computations. Examples include TinyDB [6] and Tables [7].
Because the topology of sensor networks and the nature of
optimization opportunities varies so greatly, and because it is
so difficult to determine much of this in an automatic fashion,
we do not think these solutions are universally applicable.
Instead, we suggest that the determination of where colla-
tion is done be provided explicitly by the developer. This
requires more effort, but it also provides more opportunities
for optimization and ensures that the system does not optimize
improperly. Furthermore, [37] identifies how the relational
paradigm oftentimes does not fit well with sensor data.

We instead suggest that such a framework focus strictly on
standardizing communication, and that it allows for the sharing
of arbitrarily shaped data. We suspect two modes of communi-
cation would be useful. The first would be a streaming fashion.
Devices would establish streams with servers, and send data
in real-time as it becomes available. Each chunk of data would
have a Lamport timestamp associated with it [38], generated
by the device. The server (or whatever is upstream) would
have a library that exposes this streamed data.

Because collation is often necessary, the library would
provide a method that allows an application to specify the
oldest timestamped data that could possibly be of interest. This
allows the application to look back in time at old data if nec-
essary, while providing the library an opportunity to determine
what data is safe to garbage collect. Multiple streams across
the system would be possible, including multiple streams be-
tween two devices. The streams could be setup and destroyed
during the application lifecycle. This is somewhat similar to
Intel Concurrent Collections [39], except the framework would
focus more strongly on distributed systems.

This communication method is ideal for upstream mes-
saging, but not necessarily for downstream. Thus we are
investigating the availability of event-based communication in
this framework in addition to streams. Any device can publish
events with a given name. Devices can also subscribe to events
with specific names. Events are distributed as necessary to
the subscribed devices. This method is nice for downstream
communication because it presents an inversion of control, so
that upstream devices that publish do not concern themselves
with who would be interested in certain events.

In this study, such a communication framework would
have been hugely useful. A number of bugs were spotted in
the custom protocol, especially when multiple clients were
communicating with the server. A standard framework could
effectively negate the opportunity for large classes of bugs and
greatly improve developer productivity. We probably would
have architected the system such that the server would stream
updates to the Android application, and the Android applica-
tion would publish events when it requested the robot to move
to another location. Logically, this makes sense: the streams
would be used for high bandwidth data with frequent, regular
updates, and the events would be used for relatively simple
data with infrequent, unpredictable updates.

B. A declarative DSL for sensor networks

The communication framework would be useful for de-
velopers that need maximum flexibility. Furthermore, most
of the issues we found relate to the use of Java and its
ecosystem. Java is a very general purpose imperative program-
ming language. A declarative language with domain specific
semantics for sensor networks could provide significant pro-
ductivity gains for teams without strong development expertise
and further short-circuit many of the issues listed above by
avoiding them altogether.

TinyDB provides one model for a sensor network DSL.
It provides a SQL-like interface for querying sensors, and
automatically handles the effort of data routing and collation -
even in an ad-hoc network of sensors. Unfortunately TinyDB
is not available for the Android platform, as it is dependent
on TinyOS. Also, TinyDB focuses very strongly on power
efficiency and performance in ad-hoc networks. The former is
not nearly as much of a concern with high-powered Android
phones, and since Android phones have cellular radios, there
is no need to be able to function in ad-hoc environment. This
might provide some opportunities to create a platform that is
similar to, but more flexible than TinyDB.

As mentioned before, we do not believe relational algebra
semantics are universally applicable for sensor network ar-
chitectures. But in the cases in which the model is fitting,
such a declarative language could remove or alleviate most
of the other issues we found. High costs would likely be
reduced since the developer would have to write and maintain
significantly less code. It would be less difficult in finding
domain expertise because the language would use mostly SQL
abstractions, hiding the Android-specific logic. Incompleteness
of documentation on the part of Android would not be a
concern as developers would be unlikely to have to delve into
that information.

The language could additionally build on top of the com-
munication framework to provide a cohesive environment for
developers to create sensor network architectures. For simple
architectures, developers could use the declarative language.
If the language proved too inflexible, they could drop down
to the communication framework. Applications could even be
composed of some combination of the two abstractions.

VII. CONCLUSION

We believe smartphones or platforms with similar capa-
bilities will play an increasingly prevalent role in sensor
network architectures given their commodity pricing and rich
sensing hardware. Thus, we set out to design an application
for Android that acts as part of a sensor network to get a
feel for what the current challenges are. Using our knowledge
from building the application, we provide a number of pain
points for Android development, and suggest ideas that could
alleviate some issues with sensor network development on
smartphone platforms.

Our work is far from complete. Now that we have some
insight on sensor network development, we intend to continue



work on the suggested ideas. We further intend to upgrade
camera network to use this model, and report on the results.
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