
http://www.renci.org/techreports
RENCI Technical Report Series

TR-13-01
Anirban Mandal, Ilia Baldine, Yufeng Xin,

Paul Ruth, Chris Heerman
April 2013

Enabling Persistent Queries for 
Cross-aggregate Performance Monitoring



Enabling Persistent Queries for Cross-aggregate Performance Monitoring

Anirban Mandal, Ilia Baldine, Yufeng Xin, Paul Ruth, Chris Heerman
Renaissance Computing Institute, UNC - Chapel Hill

Abstract

It is essential for distributed data-intensive applications
to monitor the performance of the underlying network,
storage and computational resources. Increasingly, dis-
tributed applications need performance information from
multiple aggregates, and tools need to take real-time
steering decisions based on the performance feedback.
With increasing scale and complexity, the volume and
velocity of monitoring data is increasing, posing scal-
ability challenges. In this work, we have developed
a Persistent Query Agent (PQA) that provides real-
time application and network performance feedback to
clients/applications, thereby enabling dynamic adapta-
tions. PQA enables federated performance monitor-
ing by interacting with multiple aggregates and perfor-
mance monitoring sources. Using a publish-subscribe
framework, it sends triggers asynchronously to appli-
cations/clients when relevant performance events occur.
The applications/clients register their events of interest
using declarative queries and get notified by the PQA.
PQA leverages a complex event processing (CEP) frame-
work for managing and executing the queries expressed
in a standard SQL-like query language. Instead of sav-
ing all monitoring data for future analysis, PQA observes
performance event streams in real-time, and runs contin-
uous queries over streams of monitoring events. In this
work, we present the design and architecture of the per-
sistent query agent, and describe some relevant use cases.

1 Introduction

Advanced multi-layered networks allow to connect
widely distributed computational and storage resources
to scientific instruments to pursue the goals of data-
driven computational science. The increasingly dynamic
behavior of networks and the new connectivity options
at different layers enabled by new technologies has rev-
olutionized the way computational activities are struc-

tured. They permit a move from static arrangements of
resources that persist over long periods of time to highly
dynamic arrangements that respond to the needs of the
scientific applications by dynamically provisioning nec-
essary network and edge resources with some notion of
optimality. Critically, no resource provisioning and allo-
cation mechanism can operate on behalf of the applica-
tion unless it is capable of providing feedback to the ap-
plication. The feedback describes the performance and
state of the allocated resources, and the performance of
the application on the allocated resources. Large en-
sembles of network, compute and storage resources in-
evitably experience performance degradations and fail-
ures, and applications must be informed about them. Pro-
viding feedback about resource performance to the ap-
plication, to enable closed-loop feedback control and dy-
namic adjustments to resource allocations is of utmost
importance. Many monitoring solutions exist today that
can provide such feedback including perfSONAR, Gan-
glia, MonALISA etc. However, presenting this informa-
tion to an application in a sufficiently abstract and useful
fashion still remains a challenge.

The challenge is even greater when one has to moni-
tor distributed infrastructure and distributed application
executions spanning multiple domains, and there is no
central point of control. In order to effectively ana-
lyze end-to-end bottlenecks with respect to several as-
pects of application execution (network congestion, high
latency, compute load, storage system bottlenecks), we
need a mechanism to federate performance information
from these diverse aggregates and derive useful insights
in an application specific manner. The focus should be on
gaining high-level insights important to application per-
formance. This entails taking a cross-aggregate view of
computational, network and storage performance, gath-
ering performance metrics (from several measurement
sources like perfSONAR services, network infrastructure
monitors, XMPP based monitoring entities, on-node per-
formance information - OS, system, application counter



data etc.) and reasoning about them in the context of a
particular application execution.

The volume and velocity of monitoring data are in-
creasing rapidly with increased scale and complexity of
the substrate and increased availability of monitoring
data from various sources, each capable of generating
lots of monitoring data at a rapid rate. Often, monitoring
data is stored for future analysis to analyze past perfor-
mance. With high volume performance monitoring data,
we can no longer afford to store all performance data for
post-processing and analysis. Since steady state perfor-
mance is seldom interesting, not all performance data
tends to be useful. Also, current applications and tools
managing application executions need dynamic real-time
feedback of application performance so as to enable real-
time steering based on observed performance. So, we are
facing scalability challenges in dealing with high volume
performance data and increasingly need to provide real-
time feedback to tools.

In this work, we address some of the above challenges.
We have developed a persistent query agent (PQA) that
enables persistent queries on application and system per-
formance. Applications or clients managing applica-
tion execution are able to express important performance
metrics, threshold conditions, or event condition combi-
nations using declarative queries. PQA enables federated
performance monitoring by interacting with multiple ag-
gregates and performance monitoring sources. By lever-
aging a publish-subscribe framework, it asynchronously
sends triggers to applications/clients when relevant per-
formance events occur. The applications/clients register
their events of interest using queries and get notified by
the PQA when those events occur. Our work presents a
novel use of an open source complex event processing
(CEP) framework to manage and execute these queries
expressed in a standard SQL-like query language. In-
stead of saving all monitoring data for future analysis,
PQA observes performance event streams in real-time,
and runs continuous queries over streams of events gen-
erated from the various performance monitoring sources.

The remainder of the paper is structured as follows.
Section 2 describes related work. Sections 3 and 4
present the motivation, design and architecture of PQA.
Section 5 describes some relevant use cases and section 6
concludes the paper.

2 Related Work

perfSONAR [13, 15, 4] offers a web-services based in-
frastructure for collecting and publishing network per-
formance monitoring. It consists of a protocol, architec-
ture and set of tools developed specifically to work in a
multi-domain environment with the goal of solving end-
to-end performance problems on network paths crossing

multiple domains. perfSONAR provides hooks for deliv-
ering performance measurements in federated environ-
ments. However, it is the responsibility of higher level
tools to make use of perfSONAR data in a way relevant
to a particular distributed application.

There are several other multi-domain monitoring
tools. MonALISA [11] is a framework for distributed
monitoring. It consists of distributed agents that han-
dle metric monitoring for each configured host at its site
and all the wide area links to other MonALISA sites.
MonALISA provides distributed registration and discov-
ery, and is designed to easily integrate existing moni-
toring tools and procedures to provide metric informa-
tion in a dynamic, customized way to other services or
clients. The underlying conceptual framework is similar
to that of perfSONAR. INTERMON [5] is another multi-
domain network monitoring framework, which focuses
on inter-domain QoS monitoring and large scale network
traffic analysis. They model abstractions based on traf-
fic and QoS parameter patterns and run simulations for
planning network configurations. Their approach is cen-
tralized, where flow, topology and test information are
collected and stored in a central location for running the
analysis. Other notable multi-domain network monitor-
ing frameworks are ENTHRONE and EuQoS. In [3],
Belghith et. al present a case for a configurable multi-
domain networking architecture, and discuss collabora-
tion schemes used to select measurement points that par-
ticipate in multi-domian monitoring, and to configure the
parameters of the measurement points selected.

OMF [8] provides a set of software services to run
repeatable experiments on network testbeds, and to
gather measurements from those experiments that are
potentially running across several domains. OMF en-
abled experiments can use the OMF measurement library
(OML) [14] to collect and store any type of measure-
ments from applications. OML provides an API to add
user defined measurement points and to inject the mea-
surement streams into the library. These streams are pro-
cessed by the library as defined by the user, including
filtering etc. and results are pushed to local files, or to
OMF control servers that store the results in a database.

There has been some work on automated ways of us-
ing and analyzing perfSONAR data. OnTimeDetect [6]
does network anomaly detection and notification for
perfSONAR deployments. It enables consumers of perf-
SONAR measurements to detect network anomalies us-
ing sophisticated, dynamic plateau detection algorithms.
Pythia [9] is a data analysis tool that makes use of perf-
SONAR data to detect, localize and diagnose wide-area
network performance problems. Kissel et. al. [10] have
developed a measurement and analysis framework to
automate troubleshooting of end-to-end network bottle-
necks. They integrate measurements from network, hosts

2



and application sources using a perfSONAR compatible
common representation, and an extensible session proto-
col for measurement data transport, which enables tun-
ing of monitoring frequency and metric selection. They
leverage measurement data from perfSONAR, NetLog-
ger traces and BLiPP for collecting host metrics.

3 Persistent Query Agent (PQA)

Although there exist tools that analyze monitoring
data from multi-domain measurement sources, they are
mostly targeted toward solving one particular problem.
It is difficult to configure or customize these tools to di-
agnose cross-aggregate performance problems. Clients
can’t programmatically ask questions about metrics, nor
can they be automatically notified. Also, most of the
tools do an after-the-fact analysis to determine what went
wrong post-mortem, which might not be always possi-
ble with proliferation of available monitoring data. The
requirements of applications and clients to obtain dy-
namic, real-time, cross-aggregate performance feedback
pose challenges not addressed by existing tools. So, we
have developed a persistent query agent (PQA) for pro-
viding real-time performance feedback to applications
or clients so as to enable steering. PQA interacts with
multiple aggregates and performance monitoring sources
and asynchronously sends triggers to applications/clients
when relevant performance events occur. The applica-
tions/ clients register their events of interest using queries
and get notified by the PQA when those events occur.
PQA doesn’t store monitoring data. It processes perfor-
mance event streams in real-time using persistent client
queries.

PQA uses an off-the-shelf complex event process-
ing (CEP) [12] engine for managing and executing the
queries expressed in a standard SQL-like query lan-
guage. The queries enable expressing complex matching
conditions that include temporal windows, joining of dif-
ferent event streams, as well as filtering, aggregation, and
sorting. The CEP engine behaves like a database turned
upside-down. Queries “persist” in the CEP system. Data
or events are not stored, rather “watched” and analyzed
as they pass by. In the following sections, we present the
design, architecture and current implementation status of
the persistent query agent.

4 PQA Architecture

There are various components of PQA as in Figure 1,
which are described in more detail in the following sec-
tions.

• Esper engine: This is the complex event processing
engine that processes performance measurement

events injected, and triggers actions when queries
get satisfied. The various PQA monitoring clients
inject events into the Esper engine.

• Trigger listeners: They are responsible for publish-
ing events of interest when a query is satisfied. Ap-
plications/clients that are interested in those events
can subscribe to events of interest. Typically, events
of interest would correspond to queries submitted
by the applications. Applications would automati-
cally be notified when such events occur.

• Query manager: It is responsible for managing ap-
plication queries through an XML-RPC interface.
Applications can register and delete queries with it.
It injects new queries and associated triggers into
the Esper engine.

• PQA monitoring clients: A perfSONAR web ser-
vices (pS-WS) client obtains measurement data
by querying available perfSONAR measurement
archives (MA) services. This client injects events
streams into the Esper engine. XMPP pubsub sub-
scriber clients obtain measurement data by sub-
scribing to pubsub nodes where measurements are
published periodically. Whenever new items are
published on the pubsub node, this client injects a
corresponding event stream into the Esper engine.

4.1 Esper Engine
Esper is a framework for performing complex event pro-
cessing, available open source from EsperTech [7]. Es-
per enables rapid development of applications that pro-
cess large volumes of incoming messages or events, re-
gardless of whether incoming messages are historical or
real-time in nature. Esper filters and analyzes events
in various ways, and responds to conditions of inter-
est with minimal latency. CEP delivers high-speed pro-
cessing of many events, identifying the most meaning-
ful events within the event cloud, analyzing their impact,
and taking subsequent action in real time. Some typi-
cal examples of applications of CEP are in finance (algo-
rithmic trading, fraud detection, risk management), busi-
ness process management and automation (process mon-
itoring, reporting exceptions, operational intelligence),
network and application monitoring (intrusion detec-
tion, SLA monitoring), and sensor network applications
(RFID reading, scheduling and control of fabrication
lines) [7].

Relational databases or message-based systems such
as JMS make it very difficult to deal with temporal data
and real-time queries. By contrast, Esper provides a
higher abstraction and intelligence and can be thought of
as a database turned upside-down: instead of storing the

3



Figure 1: PQA architecture

data and running queries against stored data, Esper al-
lows to store queries and run the data through. Response
from the Esper engine is real-time when conditions occur
that match user defined queries. The execution model is
thus continuous rather than only when a query is submit-
ted. It is for this precise reason we have chosen Esper as
our persistent query engine.

Th Esper Event Processing Language (EPL) allows
registering queries into the engine. A listener class,
which is a plain Java object, is called by the engine
when the EPL condition is matched as events flow in.
The EPL enables to express complex matching condi-
tions that include temporal windows, joining of differ-
ent event streams, as well as filtering, aggregation, and
sorting. Esper EPL statements can also be combined to-
gether with “followed by” conditions thus deriving com-
plex events from more simple events. Events can be rep-
resented as Java classes, JavaBean classes, XML docu-
ment or java.util.Map, which promotes reuse of existing
systems acting as message publishers. Esper offers a ma-
ture API with features like

• Event stream processing and pattern matching - Es-
per provides (a) Sliding windows: time, length,
sorted, ranked, accumulating, etc. , (b) Named win-
dows with explicit sharing of data windows between
statements, (c) Stream operations like grouping, ag-
gregation, sorting, filtering, merging, splitting or
duplicating of event streams, (d) Familiar SQL-
standard-based continuous query language using

insert into, select, from, where, group-by, having,
order-by, and distinct clauses, (e) Joins of event
streams and windows, and so on. Esper provides
logical and temporal event correlation, and pattern-
matched events are provided to listeners.

• Event representations - Esper supports event-type
inheritance and polymorphism as provided by the
Java language, for Java object events as well as
for Map-type and object-array type events. Esper
events can be plain Java objects, XML, object-array
(Object[]) and java.util.Map including nested ob-
jects and hierarchical maps.

We have leveraged the Esper engine in our design of
PQA. The PQA monitoring clients construct simple Java
object based Esper events and inject them into the Es-
per engine. The Esper EPL queries concerning these
monitoring events are injected into the Esper engine by
the query management module. The trigger listeners are
registered with the Esper engine as callbacks for perfor-
mance event triggers.

4.2 XMPP Publish Trigger Listeners
The XMPP pubsub specification [1] defines an XMPP
protocol extension for generic publish-subscribe func-
tionality. The protocol enables XMPP entities to cre-
ate nodes (topics corresponding to relevant events) at a
pubsub service and publish information at those nodes;

4



an event notification (with or without payload) is then
broadcasted to all entities that have subscribed to the
node and are authorized to learn about the published in-
formation.

We have leveraged the XMPP pubsub mechanism to
publish triggers corresponding to events of interest, as
registered by client/application queries. UpdateListen-
ers or trigger listeners are Esper entities that are invoked
when queries get satisfied. UpdateListeners are plug-
gable entities in the Esper system, which can peek into
event streams and are free to act on the values observed
on the event streams. There can be two types of Up-
dateListeners - (a) static UpdateListeners that are tightly
integrated with the server side of the Esper engine, and
(b) dynamic client side UpdateListeners that can be pro-
vided by clients any time and injected into the Esper
system. These ClientSideUpdateListeners can be tai-
lored to queries of interest. When queries get registered
into the PQA, the pubsub node handle is passed back to
the client, and is used to seed the ClientSideUpdateLis-
tener. When the query gets satisfied, the ClientSideUp-
dateListener uses the pubsub node handle to publish val-
ues observed on the event streams. Depending on the
design of the ClientSideUpdateListener, it might choose
to apply any function (max, current, average etc.) on
these values, or ignore some of them. When new val-
ues are published on the pubsub nodes, the clients are
notified because they subscribe to the same pubsub node
handle. The clients/applications can take adaptation ac-
tions based on occurrences of event notifications. The
ClientSideUpdateListeners have publishing rights on the
pubsub nodes and the clients are granted subscribe rights
on the nodes. New ClientSideUpdateListeners can be
implemented using existing templates in a reasonably
straightforward manner, although the currently available
set of UpdateListeners, as implemented in PQA, are suf-
ficient for simple use cases.

4.3 Query management

In the PQA architecture, the clients or applications are
interested in specific patterns of events. They might be
interested in events where values of certain metrics ex-
ceed or drop below a threshold, or where a complex con-
dition is met with respect to values of multiple metrics.
PQA allows the clients/applications to express these in
terms of queries into the PQA system.

PQA exposes a simple API for registering and deleting
such queries. The current implementation uses a simple
XML-RPC mechanism to expose this API to the clients.
The clients/applications can register their queries of in-
terest with PQA and PQA provides a pubsub node handle
to the clients corresponding to the registered query. The
query management system in PQA hashes these queries

and pushes them onto the Esper engine for continuous
monitoring of event streams. The queries are injected
using a management interface provided by Esper. The
clients/applications can then subscribe to the provided
pubsub node handle and be notified by the XMPP pubsub
mechanism when their queries get satisfied. The query
management system is responsible for managing queries
from multiple clients. Although not implemented in the
current prototype, query management can be extended to
handle client authentication over SSL using certificates,
as implemented in a separate context by the same authors
[2].

In PQA, the queries are expressed using the Esper
Event Processing Language (EPL), which is a declara-
tive language for dealing with high frequency time-based
event data. EPL statements derive and aggregate infor-
mation from one or more streams of events, to join or
merge event streams, and to feed results from one event
stream to subsequent statements. EPL is similar to SQL
in it’s use of the “select” clause and the “where” clause.
However EPL statements use event streams and views
instead of tables. Similar to tables in an SQL statement,
views define the data available for querying and filtering.
Views can represent windows over a stream of events.
Views can also sort events, derive statistics from event
properties, group events or handle unique event property
values.

The following is an example EPL statement that com-
putes the average memory utilization on a node for the
last 20 seconds and generates an event of interest when
the average memory utilization exceeds 70%.

"select avg(memutil) as avgMemUtil
from MemUtilEvent.win:time(20 sec)
where avgMemUtil > 70"

When a client registers a query with PQA, it is coupled
with a ClientSideUpdateListener that publishes relevant
metrics from the event stream when the query is satis-
fied. In the previous example, the ClientSideUpdateLis-
tener may choose to publish the avgMemUtil value, or
the instantaneous value that triggered the threshold to go
above 70.

A more complex example would be a query using joins
of several performance metrics from multiple domains.

"select
b.metricName as metricName1, b.metricValue as metricValue1,
m.metricName as metricName2, m.metricValue as metricValue2
from
BWUtilization.win:length(1) as b,
MemoryUtilization.win:length(1) as m
where b.metricValue > 1.40012E9 and m.metricValue > 70"

Here the query concerns instantaneous metric values for
bandwidth between two end points and memory utiliza-
tion at an endpoint. The trigger is raised when both the
conditions are met.

5



4.4 PQA Monitoring Clients
Distributed application execution entails cross-aggregate
performance monitoring because a global insight is re-
quired to identify performance bottlenecks. It is im-
portant to monitor the performance of not only the sys-
tem and network entities in the different aggregates,
but also specific application performance metrics as ob-
served when applications are executing. One of the goals
of the PQA tool is to be able to gather these diverse
performance metrics from multiple measurement sources
belonging to different aggregates. This makes it possi-
ble to correlate and filter different observed metrics in an
application specific manner through use of queries into
PQA.

To this end, PQA includes different monitoring clients
that continuously gather data from different sources -
system and application specific. The monitoring clients
follow a simple design. They interact with measurement
sources using their respective native APIs, and collect
the metric data. They then construct Esper events corre-
sponding to the observed metric and push event streams
into the Esper engine. As of current implementation,
PQA includes PerfSONAR and XMPP based clients. It
is possible to add new kinds of monitoring clients.

4.4.1 perfSONAR clients

The perfSONAR service responsible for storing mea-
surement information is called a measurement archive
(MA). MAs contain two types of information: data and
metadata. Data represents the stored measurement re-
sults, which are mostly obtained by perfSONAR mea-
surement points (MP). This includes active measure-
ments such as bandwidth and latency, and passive mea-
surements such as SNMP counter records. Metadata is
an object that has data associated with it. For exam-
ple, a bandwidth test identified by its parameters (i.e.
endpoints, frequency, duration) is the metadata associ-
ated with bandwidth measurement. The MA exposes
a web-service interface so that web service clients can
query for data/metadata stored in the MA. The PQA
perfSONAR clients obtain measurement data by query-
ing available perfSONAR MA services, and then con-
struct Esper events that get continuously inserted as event
streams into the Esper engine.

4.4.2 XMPP based clients

Measurement information can be published by applica-
tions or system monitoring entities using the XMPP pub-
sub mechnism, so that interested third parties (other ap-
plications, decision engines, workflow tools) get notified
of those measurements. This is a general method to dis-
seminate instantaneous performance information. The

XMPP based PQA monitoring clients subscribe to rel-
evant pubsub nodes for measurement streams based on
configured events. On event notifications on the pubsub
nodes, these clients construct Esper events and continu-
ously insert event streams into the Esper engine. Note
that these XMPP based PQA monitoring clients are dif-
ferent from application clients that query the PQA and
subscribe to XMPP pubsub node handles corresponding
to events of interest.

5 Use Cases

The persistent query agent can be used in a multitude
of scenarios that require distributed monitoring. These
include data-intensive distributed scientific workflow ap-
plications running on networked clouds, as in Figure 2,
where it is important to monitor the computational per-
formance on nodes and network performance to diag-
nose any performance problems, both inside the applica-
tion and at the infrastructure level. For example, third
party clients like workflow engines would be able to
query PQA about existence of a combination of perfor-
mance metric thresholds, and would get notified when
such conditions arise. This enables efficient feedback
for the workflow engine to steer the execution of rest
of the workflow. PQA can also be used exclusively at
the infrastructure level, monitoring health of distributed
infrastructure, and triggering events to relevant infras-
tructure owners when critical events occur. This en-
tails running continuous health queries, so analysis hap-
pens real-time and no archival is required. Other cloud
based distributed applications like cloud oriented content
delivery networks could leverage PQA to monitor dif-
ferent performance metrics with respect to latency and
service rates. PQA would be useful for network mon-
itoring to detect end-to-end bottlenecks, when network
paths span multiple domains, and measurement events
are made available to PQA.

6 Conclusions and Future Work

We have presented the design, architecture and imple-
mentation of a persistent query agent (PQA). PQA en-
ables federated performance monitoring by interacting
with multiple aggregates and performance monitoring
sources. The PQA implementation leverages an open
source complex event processing engine called Esper.
The applications/clients register their events of interest
using declarative queries expressed in EPL, an SQL-like
standard query language. PQA processes event streams
and asynchronously sends triggers to applications/clients
using an XMPP pubsub mechanism when relevant per-
formance events occur. PQA is scalable - instead of

6



Figure 2: PQA scientific workflow use case

storing all monitoring data for future analysis, PQA ob-
serves performance event streams in real-time, and runs
persistent queries over streams of events generated from
the various performance monitoring sources. The real-
time performance feedback is useful in a variety of use
cases like workflow scheduling, resource provisioning,
anomaly and failure detection etc.

In future, we plan to extend PQA in different direc-
tions. We plan to improve the ability to plug in new kinds
of monitoring sources dynamically. We are also working
on extending the system so that clients are able to add
custom update listeners so that they are able to manage
what information gets published when an event trigger
happens. Our future plans also include coming up with
measurement ontologies so that it becomes easier to de-
scribe, register and discover new metrics.

Acknowledgments

This work is supported by the Department of Energy
award #: DE-FG02-10ER26016/DE-SC0005286.

References

[1] The XMPP Standards Foundation XEP-0060:
Publish-Subscribe http://xmpp.org/extensions/xep-
0060.html.

[2] I. Baldine, Y. Xin, A. Mandal, P. Ruth, C. Heer-
mann, and J. Chase. Exogeni: A multi-domain
infrastructure-as-a-service testbed. In TRIDENT-
COM, pages 97–113, 2012.

[3] A. Belghith, B. Cousin, S. Lahoud, and S. Ben
Hadj Said. Proposal for the configuration of multi-

domain network monitoring architecture. In In-
formation Networking (ICOIN), 2011 International
Conference on, pages 7 –12, jan. 2011.

[4] J. W. Boote, E. L. Boyd, J. Durand, A. Hanemann,
L. Kudarimoti, R. Lapacz, N. Simar, and S. Trocha.
Towards multi-domain monitoring for the european
research networks. In TNC, 2005.

[5] E. Boschi, S. DAntonio, P. Malone, and C. Schmoll.
Intermon: An architecture for inter-domain moni-
toring, modelling and simulation. In R. Boutaba,
K. Almeroth, R. Puigjaner, S. Shen, and J. Black,
editors, NETWORKING 2005. Networking Tech-
nologies, Services, and Protocols; Performance of
Computer and Communication Networks; Mobile
and Wireless Communications Systems, volume
3462 of Lecture Notes in Computer Science, pages
1397–1400. Springer Berlin Heidelberg, 2005.

[6] P. Calyam, J. Pu, W. Mandrawa, and A. Krishna-
murthy. Ontimedetect: Dynamic network anomaly
notification in perfsonar deployments. In Modeling,
Analysis Simulation of Computer and Telecommu-
nication Systems (MASCOTS), 2010 IEEE Interna-
tional Symposium on, pages 328 –337, aug. 2010.

[7] EsperTech. http://www.espertech.com, 2013.

[8] G. Jourjon, T. Rakotoarivelo, and M. Ott. A por-
tal to support rigorous experimental methodology
in networking research. In 7th International ICST
Conference on Testbeds and Research Infrastruc-
tures for the Development of Networks and Com-
munities (Tridentcom), page 16, Shanghai/China,
April 2011.

[9] P. Kanuparthy and C. Dovrolis. Pythia: Dis-
tributed Diagnosis of Wide-area Performance Prob-
lems. Technical report, Georgia Institute of Tech-
nology, 2012.

[10] E. Kissel, A. El-Hassany, G. Fernandes, M. Swany,
D. Gunter, T. Samak, and J. Schopf. Scalable in-
tegrated performance analysis of multi-gigabit net-
works. In Network Operations and Management
Symposium (NOMS), 2012 IEEE, pages 1227 –
1233, april 2012.

[11] I. Legrand, H. Newman, R. Voicu, C. Cirstoiu,
C. Grigoras, C. Dobre, A. Muraru, A. Costan,
M. Dediu, and C. Stratan. MonALISA: An agent
based, dynamic service system to monitor, con-
trol and optimize distributed systems. Computer
Physics Communications, 180:2472–2498, Dec.
2009.

7



[12] A. Margara and G. Cugola. Processing flows of in-
formation: from data stream to complex event pro-
cessing. In Proceedings of the 5th ACM interna-
tional conference on Distributed event-based sys-
tem, DEBS ’11, pages 359–360, New York, NY,
USA, 2011. ACM.

[13] B. Tierney, J. Boote, E. Boyd, A. Brown, M. Grig-
oriev, J. Metzger, M. Swany, M. Zekauskas, Y.-T.
Li, and J. Zurawski. Instantiating a Global Net-
work Measurement Framework. Technical Report
LBNL-1452E, Lawrence Berkeley National Lab,
2009.

[14] J. White, G. Jourjon, T. Rakotoarivelo, and M. Ott.
Measurement architectures for network experi-
ments with disconnected mobile nodes. In Inter-
natinonal ICST Conference on Testbeds and Re-
search Infrastructures for the Development of Net-
works and Communities (TridentCom), pages 315–
330, Berlin, May 2010. Springer-Verlag.

[15] J. Zurawski, J. Boote, E. Boyd, M. Glowiak,
A. Hanemann, M. Swany, and S. Trocha. Hier-
archically federated registration and lookup within
the perfsonar framework. In Integrated Network
Management, 2007. IM ’07. 10th IFIP/IEEE Inter-
national Symposium on, pages 705 –708, 21 2007-
yearly 25 2007.

8


	TR-13-01-coverpage
	TR-13-01

