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Abstract

This paper reports on experience with using Seman-
tic Web technologies for managing multi-domain net-
working infrastructure-s-a-service (IaaS) testbed. An
OWL ontology based on newly-created vocabular-
ies was used to model multi-layer network providers
with common base classes for fundamental cyber-
resources, and adaptation functions from resources
at one layer onto resources of the same base class
at the layer below. Extended SPARQL path queries
supported by GLEEN were used to support topol-
ogy embedding and resource provisioning for creat-
ing connected arrangements of compute, storage and
network resources gathered from multiple resource
providers.

The context for the work is the use of the seman-
tic models in ORCA - the control software for Ex-
oGENI, a new testbed funded through NSFs GENI
project. ExoGENI is a multi-domain cloud testbed
with a high degree of control over networking func-
tions, including links within each domain and dy-
namic inter-domain links over national circuit fab-
rics. The paper describes how the semantic network
models enable ExoGENI to instantiate on-demand
virtual topologies of virtual machines linked by on-
demand circuits and segments for a variety of applica-
tions ranging from networking experiments to high-
performance computing.

Introduction

IaaS (Infrastructure-as-a-Service) cloud services are
evolving rapidly beyond their initial form as sim-
ple virtual machine services (e.g., Amazon EC2).
Cloud providers increasingly integrate platform ca-
pabilities with various programming models (PaaS
or Platform-as-a-Service), along with “network-as-a-
service” (NaaS) [12] capabilities to allocate and con-
figure virtual network topologies connecting edge re-
sources in multi-tenant environments. Services may
be composed together to form connected arrange-
ments of virtualized infrastructure comprising com-
pute, storage and network resources, assembled form
multiple infrastructure providers. This process is re-
ferred to as topology embedding, i.e. finding isomor-
phic or homeomorphic mappings between the avail-
able resource network graph assembled from multiple
providers and the request network graph provided by
the user.
Semantic web technologies provide the necessary

flexibility of expression and the readily available tools
for querying and inference that simplify the typical
problems encountered in the process of embedding
topologies. Path query tools make it possible to oper-
ate on path abstractions in constructing higher-level
complex embedding algorithms. Inference allows to
generalize certain algorithms making them insensitive
to specific resource types involved in the request.
As a motivating example, consider complex sci-

entific applications that require a diverse set of re-
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sources assembled together as elements of a compu-
tational workflow that may need to run multiple steps
on di↵erent resources in order to achieve the final re-
sult with intermediate results transported between
di↵erent computational resources. Performance iso-
lation o↵ered by a NaaS system capable of creating
the necessary virtualized and individually tuned in-
frastructure rapidly on demand represents a signifi-
cant advance on the current state of the art in com-
putational infrastructure. As an example, Figure 1
shows the infrastructure to support a workflow mod-
eling the electronic properties of a catalyst molecule
involved in a chemical process which converts CO2
molecules from air and water molecules into methane
under sunlight. Methane can then later be used as
fuel. This work is part of a larger US DOE Solar Fuels
initiative. This example requires the orchestration of
resources from multiple computational and network
resource providers in order to complete its steps. We
study this example in more detail in Section 0.1.
We envision a future cloud ecosystem for support-

ing such applications in which multiple provider do-
mains o↵er various cloud infrastructure services, both
on a commercial basis and for non-commercial use by
specific user communities, e.g., for research and ed-
ucational use. This vision requires a rich means to
represent resources and reason about them. Using
these models, providers can advertise their resources
and customers can describe desired resources. Also,
declarative models can describe infrastructure at
physical and virtual layers, or at multiple logical lay-
ers, for use by increasingly sophisticated algorithms
to configure, program, and adapt the resources to
user or application requirements. This paper de-
scribes our experience using Semantic Web technolo-
gies and extended SPARQL queries supported by
GLEEN for modeling networking resources to sup-
port user specification of the infrastructure necessary
to support their needs, which may include computa-
tional workflows as above or other applications that
benefit from virtualized infrastructure-as-a-service.
We are working toward this vision in the Exo-

GENI/ORCA project. ORCA (Open Resource Con-
trol Architecture [10, 5]) is a multi-domain orchestra-
tion software framework for providers of cloud and
network infrastructure. It is an architecture to or-

chestrate a collection of independent virtual infras-
tructure providers through their native IaaS inter-
faces. The ORCA software ecosystem is part of US
National Science Foundation’s GENI project and Cy-
berinfrastructure programs.
ExoGENI testbed funded by US NSF uses ORCA

software to orchestrate resources across multiple sites
in the US, located on university campuses, with
each site contributing cloud resources to the testbed.
Network providers like NLR and Internet2 o↵er
bandwdidth-on-demand channels between the sites.
ExoGENI allows users to create custom topologies
using resources from multiple federated providers. In
our view this infrastructure is tremendously useful as
a tool for computational sciences, where performance
isolation and customization abilities of the system
make it possible to achieve science results faster and
more conveniently. When completed, ExoGENI will
span close to 20 US university campuses and labs.
In ORCA we use semantic network models to de-

scribe pools of resource infrastructure, cloud services
and to allocate virtual resources from resource pools,
and virtual networks. Our premise is that rich seman-
tic models are the key to future development of net-
worked clouds. They serve as a foundation for emerg-
ing declarative models to program networks and net-
worked systems, and to control both the provider net-
works and the hosted customer environments (virtual
networks).
The rest of the paper is structured as follows: in

Section we provide some background on ORCA and
ExoGENI; in Section we motivate and describe the
NDL-OWL ontology we created to describe the var-
ious IaaS compute; in Section we describe the ap-
plication of various models within ORCA framework
as applied to ExoGENI testbed, we then describe the
above scenario in which these components come to-
gether to support a real application and, finally, con-
clude with the description of potential future direc-
tions for our work in Section 0.1.

ExoGENI and ORCA

ORCA is a federation architecture for combining
many providers into a unified service. ORCA
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Figure 1: SC11 demo. Chemical process (upper-left), workflow steps (upper right) and topology.

software agents representing customers, resource
providers, and brokers exchange information in the
form of semantic models. Each provider o↵ers an
API to allocate, instantiate, configure, and use the
resources that it controls (its substrate).

Providers may use various virtualization technolo-
gies or other means to manage their resources as
pools of independently allocatable units. These vir-
tual resources are called “slivers” to distinguish them
from the underlying substrate resources. A sliver
is any virtual resource element that can be named,
instantiated, managed, and released independently
of other slivers. The providers o↵er an infrastruc-
ture (IaaS) service, in which slivers correspond to
instances of fundamental and well-understood cyber-
resources, such as virtual machines, bandwidth-on-
demand channels, storage volumes, and virtualized
portions of switches or routers.

Slivers may be linked together in various ways to
create built-to-order environments that host an ac-
tivity such as an application or service. These linked
sets of slivers hosting an activity are called slices.
ExoGENI slices are isolated: they interact with the
outside world through controlled interfaces, and the

virtual resources in a slice may have defined quality-
of-service properties for improved performance isola-
tion.
Built-to-order virtual network slices can implement

routing overlays using IP or other packet-layer pro-
tocols. Testbed users may deploy custom node oper-
ating systems with alternative networking stacks into
their nodes, and use programmable datapaths and/or
virtual routers to implement new network services at
the cloud edge and at network intersection points.
Scientific applications may create custom topologies
out of necessary compute and data resources and ex-
ecute their workflow in this dynamic and elastic slice
infrastructure.
The initial ExoGENI deployment includes several

kinds of aggregates o↵ering network services, each
represented by an ORCA Aggregate Manager (or AM
for short):

• Cloud sites. A cloud site AM exposes a sliver-
ing service to instantiate virtual machines (VMs)
on its hosts and virtual links (VLANs) over its
internal network.

• Bandwidth-on-demand services. For these
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services, the AM invokes a provider’s native pro-
visioning APIs to request and manipulate cir-
cuits. We have developed ORCA plugins for
NLR’s Sherpa FrameNet service and the OS-
CARS circuit reservation service used in ESNet
and ION [2]. ORCA can also provision complex
connections [4] on a multi-layer metro network
called BEN (Breakable Experimental Network)
connecting several of the ExoGENI sites.

Each virtual link instantiated from these aggregates
appears as an atomic link in the slice’s virtual topol-
ogy. At the layer below, the aggregate may perform
internal stitching operations to construct a requested
virtual pipe or segment from multiple stitched links
traversing multiple substrate components within the
aggregate’s domain. A virtual link may even traverse
multiple providers if the host aggregate represents a
multi-domain circuit service, such as ION.
Semantic web representations are pervasive within

this infrastructure. The controller actor, represent-
ing the users of the system relies on semantic web
representations of desired slice topologies as well as
abstracted representations of substrate provided by
the substrate owners, also expressed using semantic
web mechanisms, in order to plan resource alloca-
tion steps. Multi-layered circuit planning in BEN
AM is based on semantic web representations of re-
sources and physical and virtual connection paths, we
call NDL-OWL. Compute resources in cloud AMs are
represented using an ontology of compute elements
that we have designed.

Using semantic network models
for network description

ITU-T G.805 standard [11], Generic functional ar-
chitecture of transport networks, provides an abstract
informational model for a connection-oriented trans-
port networks. Transport networks carry multiple
types of tra�c, including Internet tra�c, however
unlike the Internet, they provide capabilities for pro-
visioning bandwidth-on-demand in the form of chan-
nels at potentially di↵erent layers (optical, ethernet
and so on). Connections at di↵erent layers within

transport networks have server-client relationships
with server layer connections serving as an envelope
for one or more client connections. As an example,
multiple Ethernet VLANs (virtual links) can be car-
ried inside a single optical wavelength. Certain types
of networking equipment are capable of adaptations
from one layer to another, i.e. accepting one or more
client connections and multiplexing them onto one or
more server connections at a lower layer.
The ITU data model defines three types of compo-

nents: Topological components : access group, sub-
network, link, layer network. These concepts corre-
spond to the node, link, subgraph, and graph concept
in graph theory. Process function components : adap-
tation and termination, which describes the adapta-
tion relationship between layers and the termination
capability in the server layer. Transport components:
link connection, subnetwork connection, and network
connection, which can be used to describe the new
transport entities formed after certain configuration
actions, such as temporary connections created on
demand from multiple concatenated links.
The pioneering work in this space was done by

the developers of NDL or Network Description Lan-
guage [1, 14] in creating a model for describing op-
tical transport networks. The ontology model in
NDL followed a modular and hierarchical approach
of G.805 and used RDF language, in which a num-
ber of abstract classes and properties based on the
G.805 are defined. The fundamental components
in NDL include the Interface class, Adaptation class
to define the adaptation relationship between layers,
ConnectTo predicate to define the connectivity be-
tween Interface, and switchedTo predicate to define
the cross-connect between interfaces within a switch-
ing matrix of a network element.

NDL-OWL

In ORCA we extended NDL to define a more power-
ful ontology using OWL (Ontology Web Language).
We call our extended ontology suite NDL-OWL.1.
NDL-OWL adopts key NDL concepts and extends

1http://geni-orca.renci.org/owl contains the class

and property hierarchies that define the structural

part of NDL-OWL ontology
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them. It replaces RDF with the OWL standard to
specify certain relationships among predicates, tak-
ing advantage of stronger class properties and infer-
ences o↵ered by OWL, which enable us to specify key
network management functions as simple SPARQL
queries over NDL-OWL models. It adds a new class
hierarchy and predicates to describe edge resources
such as compute servers, virtual machines, cloud ser-
vices, and block storage servers. The ultimate goal
of this process is to create a representation language
that is su�ciently powerful to enable generic resource
control modules to reason about substrate resources
and the ways that the system might share them, par-
tition them, and combine them. Some key distinc-
tions of NDL-OWL from NDL:
Multiple models: NDL defined a single model for

representing the state of a transport network that was
suitable for multi-layered path-finding. In ExoGENI
we need to not only define the state of the substrate,
but using the same mechanisms must also allow users
to express the desired topology of their slice in a re-
quest, be able to describe the virtual slice topology
given to the user in a manifest and allow various ele-
ments of ORCA exchange abstracted substrate defini-
tions of individual domains to support topology em-
bedding. To support these requirement NDL-OWL
defines multiple such models shown in Table 1. The
di↵erence in models lies in the use of top-level classes
(e.g. Reservation or Manifest to distinguish e.g. a re-
quest from a manifest), while the majority of classes
related to resource descriptions are reused across dif-
ferent models.
Generalized label concept: A label is an entity that

distinguishes or identifies a connection among others
sharing the same communication channel (a wave-
length, a VLAN, etc). In a layer 1 network, the re-
source label usually corresponds to the physical chan-
nel ID, e.g., a particular fiber in a conduit, a wave-
length in the ITU-T grid, or time-slot in the SONET
or OTN frame. The label range is fixed and a par-
ticular physical channel has a fixed capacity. We ex-
tend the NDL Label class to associate the capacity
and QoS characteristics with a transport entity so
that it becomes the information hook. Two proper-
ties, availableLabelSet and usedLabelSet, are defined
to track the dynamic resource allocation.

Connection and subnetwork mapping: A virtual
connection provisioned from multiple domains and
lower-layer links can itself become a link that can
be concatenated with other links at the same layer
to create even more complex connections (and graph
homeomorphisms). These two constructs allow defin-
ing the network topology recursively, thus support-
ing virtualization within virtualization. More impor-
tantly, these concepts can be conveniently mapped
into the subGraph concept in semantic web.
Transitive and inverse properties: Major proper-

ties in NDL model define the client-server relation-
ship between resources. inverseOf property axiom
in OWL automatically helps infer the relationship in
one direction based on the definition in another direc-
tion. For example, hasInterface and interfaceOf are
inversive as are adaptation and adaptationOf. We use
the Transitive axiom to define the connectivity prop-
erty and adaptation property. These features are very
useful in implementing a path finding algorithm in
multiple ways. Within a single layer A connectedTo
B and B connectedTo C can help infer that A con-
nectedTo C from the transitivity of the connectedTo
predicate. Further, if all necessary pairs of connec-
tion points are connected, an end-to-end path can
be directly inferred. Notably, in the case of multi-
layer path finding, the adaptationOf property is also
needed in order to infer proper adaptations between
layers.
NDL-OWL schemas are subdivided into core

and technology-specific ontologies. Core ontolo-
gies: collections.owl describes useful collection types,
layer.owl describes basic network concepts and adap-
tations, domain.owl describes basic concepts for do-
main representation. Technology-specific ontologies
describe various types of substrate: dtn.owl, itu-
grid.owl for optical networks, ethernet.owl for IEEE
802.3 and related ethernet networks, ip.owl for IPv4,
compute.owl - the basic compute ontology and its ex-
tensions for Amazon EC2 ec2.owl compute element
types. Finally there are several GENI-specific on-
tologies that describe unique GENI resources (plante-
lab.owl for PlanetLab resources, protogeni.owl for
ProtoGENI resources and several others).
Figure 2 shows a simple connection between two

servers that can be part of a resource provider’s topol-
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Substrate De-

scription model

The detailed resource and topology model that is used to describe a physical substrate in-
cluding network topology and edge resources (compute and storage).

Substrate Dele-

gation model

The abstract model to advertise an aggregate’s resources and services externally. This model
allows multiple abstraction levels, as di↵erent domains may want to expose di↵erent levels of
resource and topology description of its substrate.

Slice Request

model

The abstract model to represent user resource requests. A typical request might be a bound or
unbound virtual topology with specific resources at the edges, generated by some experiment
control tool.

Slice Reservation

model

The abstract model used by ORCA broker actors to generate resource tickets. Each ticket
contains information on one or more resources allocated from a specific cloud site named in
the ticket.

Slice Manifest

model

The abstract model to describe the topology, access method, state, and other post-
configuration information of the slice as built. It contains detailed information about in-
stantiated resources and access methods for tools or users to interact with them.

Table 1: ORCA resource models

1. Ethernet connection: Server A ----- EthernetSwitch (6509) ------- Server B 
can be request or can be added to substrate description after the request is satisfied

Server/A

Server/A/f1/ethernet 10GB/1/0/ethernet

EthernetNetworkElement

10GB/2/0/ethernet Server/B/f1/ethernet

ndl:hasInterface

rdf:type

ndl:linkedTo
ndl:hasINterface

ndl:hasInterface

ndl:linkedTo

ndl
:ha

sIN
ter

fac
e

ndl:hasSwitchMatrix
ndl:switchingCapability

rdf:typ
e

rd
f:
ty
pe

Renci/6509/EthernetSwitchMatrix
Renci/6509

Server/BEthernetNetworkElement

Figure 2: Simple connection between two servers.
ogy. Server/A and Server/B are unique URIs denot-
ing individual servers which both belong to a subclass
of ComputeElement class, itself a subclass of a Net-
workElement top class (not shown). Renci/6509 is
an Ethernet network switch (we know this because it
hasSwitchingMatrix with switchingCapability of Eth-
ernetNetworkElement), which has interfaces (in this
case ports) that connect to interfaces (also ports) on
both servers. NDL property hasInterface allows to
associate individual NetworkElements (nodes, links
are all NetworkElements) with their interfaces. In-
terfaces, in turn can be linkedTo each other.

Figure 3 shows an example of a manifest model
(a manifest model is returned to the user to show
exactly which resources were provisioned based on
the user request). The shaded portion represents the

original request for 1 day for a cluster of 5 virtual
machines (VMs) allocated from two cloud sites at
Duke University (dukevmsite/Domain) and RENCI
(rencivmsite/Domain). The request specifies that
the VMs should be connected to each other with a
common VLAN (connection/1). The provisioned re-
sources are shown in the unshaded portion and repre-
sent the actual VMs provisioned based on the request,
as well as the VLAN (vlan/1). The main instance
of the manifest is Manifest/1 - of top-level class
Manifest. It has a single element NetworkConnec-
tion/1 which contains the end points (the virtual ma-
chines) and the VLAN interconnecting them. Mani-
fest instance (Manifest/1) is linked to the originating
request (Reservation/1) via manifestHasReservation
property. Similar to the substrate model shown in
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Figure 3: Example of a manifest model that incorporates the request for topology.
Figure 2 the hasInterface property links interface in-
stances to the elements of the infrastructure (nodes
and links) and the interfaces are linked to each other
to indicate connectedness. The di↵erence is in this
case interfaces are virtual, not physical ports.

Layer Adaptations

In addition to network connectivity, a key concept
NDL and NDL-OWL is layer adaptations between
client layer and server layer described in the begin-
ning of this section. Since lower layer server connec-
tions can be dynamic, creating a path at the higher
layer may involve first constructing connections at
lower layers. Thus a path between two nodes that
presents itself as an Ethernet VLAN may in fact re-

quire an establishment of a DWDM path (a wave-
length is provisioned) and a fiber path (fibers are in-
terconnected) before the VLAN becomes active. This
is referred to as a multi-layered path.

A feasible end-to-end multi-layered path must have
compatible layer adaptations along the path within
the network elements it traverses, thus significantly
complicating the path-finding problem. Figure 4 in-
set shows an example of a simple multi layered con-
nection o↵ering VLAN Ethernet service between two
PoPs (Points-of-Presence) in a multi-layered network.
First a fiber path must be established, followed by
a DWDM connection which is carried within the
fiber, and finally one of the DWDM channels is used
to carry the VLAN service. Adaptation functions
within each PoP guarantee the ability to create ser-
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This adaptation (and the one above) is 
present,  because on the client-side
 interface has a fixed capability

to convert fiber to lambda/WDM to 10GigE
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Figure 4: A cross-layer connection using adaptations.
vice primitives in this case in a server-client fash-
ion, where higher-level connections are clients of the
lower-level server connections.

It is important to note that whether two devices are
connected in the multi-layer setting cannot be solely
decided by the connectivity (connectedTo or linkTo
properties) between their interfaces. The adapta-
tion property has to be taken into consideration to
guarantee the compatibility along the path. There-
fore a valid path between two devices normally goes

through a number of RDF triples with combinations
of the following properties: hasInterface, adaptation,
connectedTo, linkTo, adaptationOf, interfaceOf.

Figure 4 shows part of the NDL-OWL model re-
flecting a multi-layered connection. Network ele-
ments called RENCI/6509 (an Ethernet switch at
BEN PoP B/RENCI) and RENCI/DTN (a DWDM
transport node at BEN PoP B/RENCI) are phys-
ically linked to each other over fiber interfaces
RENCI/DTN/t1/fiber and 10GB/3/7/fiber. These
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interfaces due to available adaptation properties
dtn:WDM (adaptation from fiber port to DWDM)
and dtn:TenGbase-R (adaptation from DWDM to
Ethernet) have additional interfaces at DWDM layer
(RENCI/DTN/t1/lambda and 10GB/3/7/lambda)
and Ethernet layer (RENCI/DTN/t1/ethernet and
10GB/3/7/ethernet), which allow the system to de-
termine the existence of an Ethernet connection be-
tween those two elements. The figure only shows one
half of the connection at BEN PoP B, with a sim-
ilar setup at BEN PoP A/Duke. Inference is used
to determine the presence of the Ethernet connection
based on the base ndl:linkedTo property between the
fiber interfaces.

Semantic Queries

In networking, one of the most interesting graph
patterns is to find if a path exists between two
end-points, e.g., , two resources in the RDF data
set or two nodes in the RDF nodes. In a sim-
ple case, a path query can be created by a con-
junction of a list of consecutive triples, P =<
(x, p1, o1), (o1, p2, o2), ..., (o(k�1), pk, ok) >, such that
the object of a triple is the subject of its succeeding
triple except for the last triple.
This is possible only when we know the sequence

of resources on the path exactly ahead of time. How-
ever, in general it is not known. In provisioning net-
work services, we usually face two path problems: (1)
given a source node, find all the connected destina-
tion nodes; (2) given two nodes, find a valid path,
i.e., our task is actually to identify the sequence of re-
sources and the intermediate hops along a valid path.
We note that a path usually consists of a sequence of
segments that has the same topological structures,
i.e., the same subgraph pattern in the RDF data set.
The basic SPARQL graph pattern can only query for
the possible path segment between two neighboring
nodes with known adaptation and connectivity rela-
tionships. What we need is to express a path pattern
recursively using a regular path pattern.
GLEEN [7] is a regular path expression library plu-

gin to the Jena ARQ package. It supports the regular
expression operators like ’?’ (zero or one), ’*’ (zero
or more), ’+’ (one or more), ’—’ (alternation), and

’/’ (concatenation). It was designed to find the path
pattern between two entities in the medical ontology
so that a simplified view can be generated out of the
complicated class and property hierarchy. It defines
two types of query constructs that can be directly ap-
plied to a triple pattern of the SPARQL query body.
In both cases, the path expression is formed by a
number of properties recursively using above regular
expression. The gleen:OnPath is used to find all the
objects that are connected to the subject via the de-
fined path expression. A triple pattern which uses
this construct has the following form:
subject gleen:OnPath (pathExpression object)
For our purposes, the following simple query will

return all the network devices that are reachable from
a specific source device via one or more hops:

Select ?destination
Where {

source gleen:OnPath
(([ndl:hasInterface]+/[ndl:connectedTo]+/[ndl:interfaceOf]+)+
?destination ).

}
This pattern, however, only returns the destina-

tion objects without revealing how the paths are tra-
versed. The second construct gleen:Subgraph is de-
fined to accomplish this and can be applied to the
SPARQL triple pattern in the following way: (input-
Subject pathExpression inputObject) gleen:Subgraph
(outputSubject outputPredicate outputObject) . The
three arguments in the object position triple must be
unbound and are the variables to be answered by the
query. In this way, all intermediate resources along
with the path edges connecting them are obtained for
path between inputSubject and outputSubject via the
pathExpression.

Select ?a ?b ?c
Where {

(source
([ndl:hasInterface]+/[ndl:connectedTo]+/[ndl:interfaceOf]+)+
destination).
gleen:Subgraph (?a ?b ?c)

}
Because there is no way to know which layer

a dynamic connection may go through, a valid
path query needs to try every known possibil-
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ity of adaption and de-adaptation in the path
segment. If there are n adaptation possibili-
ties, the path expression pattern can be con-
structed by the unions of n basic expressions in the
form of ([ndl : hasInterface] + /[aAdaptation] ⇤
/[ndl : connectedTo] + /[aAdaptationOf ] ⇤ /[ndl :
interfaceOf ]+)+. We note aAdaptation and aAdap-
tationOf are variables that represent one of the n in-
verse property pairs for the adaptation function be-
tween two layers. When the objective is to find the
shortest path, Filter clause has to be included to eval-
uate a path to make sure the length of a valid path
is less than a value. Thus in our application domain
the evaluation of shortest cross-layer path expression
require AND, FILTER, and UNION operators.
In [13], the authors studied the computation com-

plexity of evaluating di↵erent forms of the SPARQL
graph query pattern. The evaluation can be done in
polynomial time if the pattern only contains the AND
and Filter operators. The evaluation becomes NP-
Complete if AND, FILTER, and UNION operators
appear in the pattern. If OPT operator is involved,
the problem becomes a PSPACE-complete problem.
ORCA makes extensive uses of the regular

SPARQL and GLEEN query facilities, which has
greatly simplified the implementation of its topology
embedding algorithms.

Domain Abstractions

Network providers and cloud providers typically do
not expose their internal topology to outsiders. How-
ever, in order to support federated cross-domain pro-
visioning, some limited information about the sub-
strate and its properties must be exposed. This type
of substrate or domain model abstraction, similar to
database views, is key to achieving federated resource
provisioning that satisfies complex multi-domain slice
requests. It provides information to help compute
inter-domain paths between di↵erent edge resource
providers, while at the same time filtering the infor-
mation exposed by transit network providers to limit
the exposure of topological details of their networks.
This approach puts an emphasis on the important
tradeo↵ between the requirement for privacy of net-
work providers and the optimality of the computed

inter-domain paths. The more information the ab-
stract representation exports, the more optimal the
resource allocation process becomes, typically at the
expense of privacy.
In general, the abstracted domain representation

describes the virtual resources that it is willing to
delegate. Each entity in a model has a global name
given by a URI, so a model can conveniently repre-
sent linkages to other models by including links to
named RDF nodes in descriptions of other domains.
The control framework can either collect the domain
abstract models from di↵erent providers and assem-
ble them into an overall semantic web model (RDF
graph), or treat the models as a distributed linked
data semantic web database.
ORCA implementation of the abstraction pro-

cess automatically derives the abstracted NDL-OWL
model from the complete substrate description NDL-
OWL model created by the domain owner. While
multiple levels of abstraction are possible, ORCA
supports the model similar to ATM PNNI, represent-
ing each domain as a single switching matrix with
interfaces that indicate peering points with other do-
mains. Several attributes, like available label sets and
bandwidth are defined for the interfaces.

Applying semantic models to Ex-
oGENI

NDL-OWL Models

As described in Section , NDL-OWL defines multiple
models for describing the various types of resource de-
scriptions used by ORCA within ExoGENI, as shown
in Table 1. Figure 5 shows how the di↵erent models
are exchanged between di↵erent actors. The models
are generated dynamically and exchanged by vari-
ous ORCA actors in the form of RDF-XML docu-
ments using an RPC interface, in a departure with
the Linked Data approach common in the Semantic
Web community.
Users submit their requests to the ORCA con-

trollers in the form of a request model that contains
the Reservation instance which includes a variety of
elements describing the needed resources, their topol-
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Figure 5: NDL-OWL models in ORCA.

ogy, the term of the request and other configuration
properties, like link bandwidth and OS images to be
used on the compute resources. Requests may not
be fully specified with respect to binding resources to
specific domains, thus leaving it up to the controller
to decide which specific provider sites the embedding
should take place at.
Resource providers represented by ORCA Aggre-

gate Managers (AMs) delegate abstractions of their
resources using abstract delegation models to the
ORCA Brokers. Controllers query brokers for these
models in order to perform topology embedding. Bro-
kers issue tickets for resources which permit con-
trollers to instantiate the necessary resources at se-
lected AMs and stitch them together. The controllers
return the manifest model, which merges the infor-
mation about instantiated resources with the original
request model, to the user to enable the user access
to the newly provisioned virtualized infrastructure of
the slice.

Running scientific applications on Exo-
GENI

In this section we return to the motivating example
described in the introduction, which helps put the
multitude of described mechanisms and technologies
in perspective. At a recent SuperComputing11 con-
ference ORCA linked private cloud resources in North
Carolina’s ORCA deployment to US DOE’s Hopper

super-computer to execute a complex computational
workflow simulating the atomic behavior of a solar
fuel catalyst. The workflow under the control of Pe-
gasus [6] workflow management system started ex-
ecution on a Condor [9] compute pool built out of
cloud resources in NC and completed with a massive
3K-way MPI job on Hopper (see Figure 1). ORCA
created a ’slice’ of resources consisting of a collec-
tion of cloud resources from multiple sites in North
Carolina (interlinked on-demand by BEN) and a dy-
namic QoS-provisioned link between NC resource and
NERSC (the facility housing Hopper) composed of
VLAN/MPLS segments from NLR Framenet and ES-
net. As part of the workflow data from the first step
of workflow was transported from NC to NERSC us-
ing this link in order to complete the second step.
In this demo each provider domain (individual

cloud sites and network domains) operated using a
substrate description constructed by the substrate
owner using Protégé [3] based on NDL-OWL ontolo-
gies. Abstract delegation models were automatically
generated by ORCA and delegated to a broker actor
responsible for coordinating resource allocation.
The topology for the slice was described in NDL-

OWL and submitted to ORCA controller as RDF-
XML document. The validity of the request model
was tested with a few rules made simple by the use of
inference on properties like rdfs:subClassOf. The em-
bedding of the request in specific ExoGENI sites was
determined based on SPARQL queries on a graph
model assembled from substrate delegation models
of domains. GLEEN queries were used to determine
the shortest path across multiple domains (namely
BEN, NLR and ESnet) between North Carolina and
California sites. Within BEN in North Carolina
multi-layered connections were established based on
paths computed using GLEEN queries that deter-
mined available adaptations between layers. Server-
connections (DWDM and fiber) were created in re-
sponse to the need to create a VLAN connections
between the BEN sites.

Conclusions and Future Work

In this paper we presented an overview of implemen-
tation and use of OWL-based resource representa-
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tion models in a multi-domain IaaS environment con-
trolled by software framework called ORCA. The sub-
strate for the deployment is an NSF GENI-funded
testbed called ExoGENI currently under active de-
ployment across the US. Our work demonstrates the
practical uses and future potential of this type of
knowledge representation approaches for active man-
agement of cyber-resources in a distributed environ-
ment on a global scale.
Our on-going and future work is concentrated on

devising more powerful algorithms for embedding
slices in substrate and supporting this work through
more sophisticated tools developed within the seman-
tic web community. The challenges we face lie in a
number of dimensions:
Model churn: while the more common models

frequently face the challenge of scale, they are up-
dated relatively infrequently. In contrast NDL-OWL
models are relatively small (on the order of thousands
of triples), however they are constantly updated by
adding and removing triples corresponding to provi-
sioning and removal of new resources. Dealing with
churn in our models represents a challenge in terms of
e�cient concurrent processing, where multiple agents
may want to concurrently update the same model.
SPARQL performance: as noted in Section ,

SPARQL performance greatly varies depending on
the types of statements involved. Due to NP-hard
nature of the multi-layered path-finding problem [8],
this complexity translates into the complexity of the
SPARQL searches we need to perform. We’re devis-
ing various heuristics that help deal with this problem
in a suboptimal, but tractable way.
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