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Abstract

As energy becomes a driving force in High Per-
formance Computing, determining when and how en-
ergy can be saved without impacting performance is
a key goal for both HPC hardware and software.
Scalability studies have shown that some memory-
bound applications do not scale as the thread count
increases, and in some cases performance degrades.
Adaptive Scheduling recognizes when an application
is in a memory-bound region and throttles the number
of active hardware threads. Our RCRdaemon tool
acquires hardware performance counter measurements
in near-real time. A simple hardware model added to
the Qthreads runtime system reads the collected data to
determine when memory contention exists. Using that
information, our extension to the Qthreads scheduler
reduces contention by throttling hardware threads.
Adaptive Scheduling has very low performance impact
both for memory-bound benchmarks (below 4.2%) and
for compute-bound benchmarks (2.4% - 3.7%).

For these techniques to reduce energy costs, ad-
ditional hardware energy features will be required.
Applications using Adaptive Scheduling can transition
from memory-bound to compute-bound regions hun-
dreds of times a second. Hardware mechanisms or
instructions to allow energy savings during the short
memory-bound regions could be used effectively by
multithreaded software to reduce the overall power
requirements for memory-bound applications.

1. Introduction

Moore’s law for the number of circuit elements
on a high-end chip continues to be applicable, but
in recent years it has manifested itself in the form
of modular processor chip designs in which it has
been relatively easy use die area to add processor
cores, cache modules, memory controllers, integrated

graphics, and other devices. Current generations of
multi-core, multi-socket machines have between 12
and 64 hardware threads and plans for chips with
50+ cores have been announced [1]. In contrast, off-
chip communication crosses the perimeter of the die
and is less scalable. The impact of Moore’s law on
memory has been an increase in the number of bits per
chip with relatively smaller improvements in latency
and bandwidth. To keep the relative cost of memory
under control, per core systems are configured with
fewer memory sticks than in the past. Sustained high
performance on such systems requires simultaneously
achieving an adequate degree of parallelism while be-
ing constrained by access to shared, off-chip resources
with less concurrency than the set of cores.

Power and energy consumption represent both con-
straints and costs to be controlled in high end systems.
Initial studies of exascale systems have estimated total
power consumption as high as 154.8 MW [2]. Energy
management in large systems is therefore an increas-
ingly important problem.

The software stack of emerging systems must thus
deal with a complex environment that will require
a high-degree of balanced parallelism that is con-
strained by shared resources such as memory while
using energy efficiently. There is a trend towards more
dynamic and adaptive algorithms in HPC. This trend
both presents a challenge for systems that need to run
them effectively, but it also presents an opportunity
to exploit dynamic adaptation to deal with resource
constraints while saving energy.

In this paper, we report on experimental results using
a prototype runtime system (with compiler support) to
throttle parallelism during periods of shared resource
contention to maintain or improve performance while
exposing the opportunity to reduce energy consump-
tion by idling cores.

A key component of the software stack is a mech-
anism for measuring the utilization of key shared



resources such as memory and memory controllers.
We developed a mechanism called Resource Cen-
tric Reflection for monitoring and analyzing hardware
performance measurements for these resources. Raw
counts are converted to utilization figures that have
been calibrated experimentally [3], [4]. The analysis
is available to other layers of the system.

When a shared resource is saturated, additional of-
fered load does not result in improved performance and
may decrease it. By adjusting the offered load to keep
utilization just below saturation, performance is not
negatively affected and in some cases may improve as
resources are shared more effectively by fewer threads
(e.g., accommodating a larger cache footprint per core).

An adaptive scheduler uses the utilization models to
adjust the workload by varying the number of active
cores. The software separates the concept of a software
thread from the hardware thread that executes it. The
runtime system uses this to maintain a fixed number of
software threads interacting in loops and barriers while
allowing the actual number of active hardware threads
to vary. Furthermore, multi-threaded applications must
be compiled to execute correctly in this environment
with dynamic hardware adaption.

2. Background

Dynamic adaptive scheduling requires considerable
infrastructure. Qthreads is an open-source lightweight
threaded runtime that allows the modification of
scheduling algorithms. ROSE compiles OpenMP pro-
grams for execution using Qthreads. RCRToolkit ac-
quires performance data dynamically with minimal
latency and overhead.

2.1. Qthreads

Qthreads is a library supporting portable, high-
performance, massive multi-threading [5]. It is loosely
modeled on the Tera MTA system [6], which supports
many simultaneous lightweight threads in hardware by
providing a large number of register sets and interleav-
ing instructions from the various active threads. The
Qthreads library instead supports lightweight threads in
software by providing compact stacks for each thread
and fast context switching. The library is supports
IA32, IA64, X86-64, PowerPC, SPARC architectures,
and several accelerators.

The software architecture of Qthreads is shown in
Figure 1. Each lightweight thread is called a qthread.
Qthreads are scheduled onto a small set of heavy-
weight worker threads created using the POSIX threads
(pthreads) library [7]. A qthread is the smallest unit of
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Figure 1: Software architecture of Qthreads.

work, such as a set of loop iterations or an OpenMP
task, and execution of an application generates many
more qthreads than worker pthreads. Each worker
pthread is pinned to a processor core and assigned to a
group, called a shepherd. Multiple worker pthreads can
be assigned to each shepherd, enabling the mapping of
shepherds to different architectural components, e.g.,
one shepherd per core, one shepherd per shared L3
cache, or one shepherd per processor socket.

Like the MTA system, synchronization in Qthreads
is supported by full/empty bit (FEB) operations, origi-
nally developed for the Heterogeneous Element Pro-
cessor (HEP) machine [8]. In the FEB scheme, an
additional bit is associated with each word in memory.
It specifies the current state of the data at that location
as either valid (full) or invalid (empty). Each memory
access is blocking or non-blocking operation. Block-
ing operations wait for the value to be in a desired
state and set the value to a possibly new state on
completion. When qthreads block, e.g., performing a
FEB operation, a context switch is initiated. Since this
context switch is done in user-space via function calls,
requiring neither signals nor the saving of a full set
of registers, it is less expensive than an operating sys-
tem or interrupt-based context switch. This technique
allows qthreads to execute uninterrupted until blocked,
and, once they have been blocked, allows the scheduler
to keep workers busy by switching to other qthreads.

The Qthreads library includes multi-threaded loop
execution, built upon the core threading components.
The API provides three basic parallel loop behaviors:
create a separate qthread for each iteration, divide the
iteration space evenly among all shepherds, or use
a queue-like structure to distribute sub-ranges of the
iteration space to enable self-scheduled loops. These
loop configurations are used to support OpenMP loop
parallelism. The worker pthreads serve as OpenMP



threads, and qthreads serve as OpenMP tasks.

2.2. OpenMP on Qthreads

Before one can execute OpenMP applications using
Qthreads, the application source code must be com-
piled. Compilation is a two-phase process using both
the ROSE source-to-source compiler [9] and the native
C++ compiler. ROSE performs syntactic and semantic
analysis on the code and transforms the OpenMP direc-
tives into function calls in an API called XOMP [10].
XOMP defines a common interface for OpenMP 3.0,
abstracting out internal implementation details of the
runtime system. Using a runtime library with ROSE is
as simple as creating XOMP wrappers for the library,
and the ability to hot-swap different implementations
of our own runtime system allows fast development
and testing. In the second compilation stage, the
transformed source code is compiled into executable
code by the native C++ compiler and linked with
the Qthreads library, which implements the XOMP
functions. A benefit of this two-step compilation is
ease of porting applications: Since the transformed
code is standard C++, it is possible to compile the
original source code using ROSE on a development
system, then compile the transformed code using the
native compiler on another system with a different ISA.

Our ROSE infrastructure generates guided-self
scheduled rather than static scheduled parallel loops.
This is important for Adaptive Scheduling, because it
uses the over-partitioning of work to guarantee load
balancing.

ROSE and the XOMP interface provide a means of
running applications on Qthreads (and our schedulers)
without rewriting the application to use a new runtime
interface. This greatly simplifies the comparisons be-
tween the various runtime implementations.

2.3. Hierarchical Scheduling

The Qthreads multi-threaded shepherds task sched-
uler [11] uses a hierarchical approach combining the
low-overhead load balancing of work stealing sched-
ulers [12] and the shared cache exploitation of parallel
depth-first schedulers [13]. One shepherd is created for
each chip/socket. On the systems being studied, the
cores on a chip all share a single L3 cache and all are
proximal to a local memory attached to that socket.
Within each shepherd, one worker is mapped to each
core. Among workers in each shepherd, a shared LIFO
queue provides depth-first scheduling close to serial
order to exploit the shared cache. Thus, load-balancing
happens naturally among the workers on a chip and

concurrent tasks have possible overlapping localities
that can be captured in the shared cache.

Between shepherds, work stealing is used to main-
tain load balance. Each time the shepherd’s task queue
becomes empty, only the first worker to find the queue
empty goes to look for more work. It steals enough
tasks (if available) from another shepherd’s queue to
supply all the workers in its shepherd with work. The
other workers in the shepherd spin until the stolen work
appears. Aggregate task queuing for workers within
each shepherd reduces the need for remote stealing
and decreases the number of probes required to find
available work by a factor of the number of workers per
shepherd. While a shared queue can be a performance
bottleneck, the number of cores per chip is bounded,
and locking operations are fast within a chip.

Hierarchical scheduling separates workers by shep-
herd, one shepherd per processor chip for most current
systems. Adaptive Scheduling uses this structure during
throttling to reduce threads evenly across the system.

2.4. Measuring Resource Utilization

Measuring the utilization of shared resources is
a key requirement for Adaptive Scheduling. Recent
generations of high-end processor chips have integral
shared caches, memory controllers, and inter-chip com-
munication. These resources are independent, loosely
synchronized state machines that together comprise the
uncore (in Intel’s terminology). They have their own
performance measurement sensors and counters. For
several reasons, using this hardware to provide intro-
spective monitoring of chip- and node-wide behavior
required the development of our own tool set, called
RCRToolkit. One problem is that on Intel systems the
Linux PerfEvents facility does not provide access to
these counters. On AMD processors, uncore events are
mapped to on-core counters, so PerfEvent access is
possible if done very carefully using a core not used
by the application. A second issue is that research
performance tools layered on top of PerfEvents such
as PAPI [14], TAU [15], and HPCToolkit [16] provide
first person views of performance that are designed
to attribute performance problems in a single thread
to specific sections of code. Counters and events are
virtualized, bound to a specific thread, and advance
only when that thread is running. If multiple threads
attempt to monitor a specific event, there is either
a conflict/error or all of the concurrently executing
threads see overlapping sets of event instances. In these
cases, results are either unobtainable or not usable.

In contrast, the performance measures of interest
to us are a consequence of the collective behavior



of all threads running on the box. To address these
issues, we developed RCRToolkit to provide chip-
and node-wide third-person views of the behavior of
shared resources. RCRToolkit has three main parts:
RCRdaemon collects and records dynamic hardware
counter values and rates; RCRLogger creates logs that
combine performance and execution context informa-
tion; RCRTool’s GUI post-processes and displays the
data. RCRLogger and RCRTool together provide an
effective interface for human monitoring of executions
and for off-line analysis. RCRdaemon also makes its
information available to other system software via a
shared memory segment organzied as a blackboard
with several single-writer, multiple-reader sections to
permit lock-free, low overhead communication. Ap-
plications, the thread scheduler, and other software
can make notations regarding execution context on the
blackboard for RCRLogger. In section 4.2.2, screen-
dumps from the RCRTool GUI are shown to explain
observed performance.

RCRdaemon runs as root and is pinned to a specific
“management” core that can be kept separate from
the pool of cores available for application threads. On
AMD processors Linux PerfEvents can be used, but
on Intel systems the model specific register (MSR)
kernel module is used directly to access the off-core
counters. In both cases, libpfm supports symbolic event
names. At startup, RCRdaemon reads a configuration
file that specifies the events to monitor, the sampling
rates, some simple models to transform raw counts
into measures of concurrent access at each resource,
and some thresholds on the levels of concurrency that
define “overloaded” and “idle” state. There is a unique
configuration for each model of compute node. In
typical operation on a reserved core of a 2.00 GHz
Intel Xeon X7550, the configuration polls the counters
updated between 6000 and 7000 times per a second. At
those rates, RCRdaemon uses between 12% and 17%
of a single core, or 0.5% of the 4-socket 32-core node.
Overheads can be reduced by lowering the sample rate.

3. Implementation

Dynamically adjusting computation to react to
changes in system state requires assembling the
components discussed above into a single cohesive
scheduling package. Data must be acquired in near
real-time, the runtime must allow hardware threads to
enter and leave the computation, and a performance
model must decide when contention exists.

3.1. Adaptive Scheduling

Adaptive Scheduling uses information about the cur-
rent state of the system to decide the correct num-
ber of hardware threads running at any given time.
Adaptive Scheduling receives input not only from the
application, in the form of a queue of threads to
execute, but also from RCRdaemon, in the form of
utilization rates of system resources. This additional
set of inputs allows application execution to be tuned
to the current conditions. Initially, the only control
available for tuning is to change the number of active
hardware threads.

Reducing the number of active threads to improve
system performance seems counterintuitive, but is use-
ful in at least two situations. When resources do not
overload gracefully, then Adaptive Scheduling provides
the runtime with the ability to prevent thrashing. For
example, if a thread uses 1/3 of the available cache and
has billions of cache hits and only start-up misses, one
thread running in isolation performs well. However,
executions with four or six threads exceed the cache
capacity, and almost every reference goes to main
memory. Limiting the active threads to three would
maximize cache performance. The second situation is
when factors other than time-to-completion are critical
to overall system performance. In the near term, energy
will be such a factor for massive systems like the
exascale systems being discussed for deployment near
2020 [2]. Current power estimates for Exascale sys-
tems above 150 MW and may even be a deal-breaker.
Energy is also a critical resource for any mobile device.
If the runtime can identify portions of applications in
which the threads can be either slowed or stopped,
the possibility exists for significant energy savings.
While not a total solution, it is a plausible part of the
package of solutions that will be needed. For mobile
devices, the runtime can be even more aggressive,
trading performance for battery life.

The implementation of Adaptive Scheduling com-
bines Qthread’s Hierarchical Scheduling with the infor-
mation available from RCRdaemon. The RCRdaemon
is always running, evaluating the counters. It follows
user-specified thresholds to flag each rate as saturated,
normal, or idle. During program initialization, within
the runtime, a thread is started that enters a loop to
read the current state information from RCRdaemon
and calculate the current “correct” number of active
threads. When each hardware thread looks for work to
execute, either another task or more iterations of the
current parallel loop, the “correct” number of threads
is checked. If the count of active hardware threads
exceeds that number, the hardware thread is put to



sleep. If the number of correct threads goes up, the
parallel loop completes, or the program terminates, the
sleeping threads are released to find new work or stop.

The key to making Adaptive Scheduling work in
Qthreads is not the scheduler, but the implementations
of barriers and synchronization. If barriers required the
arrival of all hardware threads, then “sleeping” a thread
would cause significant delays while the system waited
for contention to clear before allowing the thread to
continue and reach the barrier. In Qthreads, barriers
are performed on software threads. Upon reaching the
barrier with its current software thread, a hardware
thread can context-switch to a new software thread and
continue execution. Barriers are still fast, allowing for
better performance when system loads are not balanced
(OS jitter), and enabling thread-sleeping within Adap-
tive Scheduling. Synchronization is handled with the
same mechanism. If a thread needs a value and it is not
available, the hardware thread swaps out its software
thread and picks up one that is ready to execute.

In the long-term, the benefits of Adaptive Scheduling
are greatly hampered by the lack of ways to “sleep” a
core that save energy and still allows fast wake up. To
activate and wake up Dynamic Voltage and Frequency
Scaling (DVFS) currently takes milliseconds, but the
system conditions can change in microseconds or even
nanoseconds. Currently, Qthreads puts the thread into
a spin loop. The frequent instruction execution of
the spin loop greatly limits potential energy savings.
Hardware support to “sleep” a hardware thread that
saved energy and could awaken in a few microseconds
(or faster) would unlock the potential energy savings
of Adaptive Scheduling.

The performance model used by Adaptive Schedul-
ing is broken into two pieces. The first piece, inside
RCRdaemon, determines whether any of the current
utilization rates indicate resource overload. The second
piece, inside the Qthread runtime system, determines
the correct number of threads to have active. On
start-up RCRdaemon reads a configuration file that
specifies the parameters of its part of the model for
that execution. Inside that file, the various rate triggers
are easily changeable but transparent to the application
end user, who only wants the application to complete
quickly. Inside Qthreads, the various rates fire triggers
that activate a simple fixed model either to reduce or
to increase the number of threads. For the Intel 7750
processor used in the evaluation, the model reduces
hardware threads by 1/4 when contention is detected
and resets the number of active hardware threads to
the full processor width when contention subsides.

Both models are simple and are used to test the
principles and basic mechanisms. In future, we expect

to add more complex models to both Qthreads and
RCRdaemon. Tuning the models to specific processor
families in the future may allow further improvements
in energy and performance.

3.2. Memory Concurrency

The number of cores on a processor chip and the
capacity of DIMMs are both increasing at a faster rate
than memory access times, despite improvements in
pin speed and caching within the DIMMs. Thus, more
and more applications are becoming memory bound.
To explore this effect, our initial implementation of
the Adaptive Scheduling framework focuses on mem-
ory concurrency. There is a limit to the number of
concurrent memory references a DIMM can handle,
exceeding that limit results does not increase memory
bandwidth only increase memory latency.

Tuning the scheduler and calculating the new per-
formance rates is part of the porting process to any
new processor family. On most systems including
our Intel 7750, there is no one single performance
counter that measures memory bandwidth or con-
tention within the memory controller. This value can
be computed using the “uncore” B-Box counter event
IMT VALID OCCUPANCY to track the average oc-
cupancy of the In-Memory Table. Accessing the “un-
core” counters on the Intel is not currently supported
by Linux PerfEvents, so access to the required counters
is obtained using the MSR interfaces directly. MSR
reads and writes are a very low level interface and
requires RCRdaemon to run at system protection level.

4. Evaluation

To perform an initial evaluation of the effective-
ness and overheads of Adaptive Scheduling, we ran
a set of OpenMP task benchmarks and two OpenMP
benchmark applications known to be memory-bound.
This set allows examination of overheads both when
throttling occurs and when it does not.

The test system for our experiments is a Dell Pow-
erEdge M910 quad-socket blade with four Intel x7550
2.0GHz 8-core Nehalem-EX processors installed for a
total of 32 cores. Each processor has an 18MB shared
L3 cache. It runs CentOS Linux with a 2.6.35 kernel.
Although the x7550 processor supports HyperThread-
ing (Intel’s simultaneous multithreading technology),
we pinned only one thread to each physical core for
our experiments.

4.1. Barcelona OpenMP Tasks Suite

Adaptive Scheduling was evaluated with benchmark



Qthreads with RCR with Adaptive Adaptive # Time
RCRdaemon Difference Scheduling Difference Invoked

Alignment-for 1.025 1.051 -2.5% 1.047 -2.1% 0
Alignment-single 1.031 1.061 -3.7% 1.066 -3.7% 0
Nqueens 1.616 1.660 -2.7% 1.666 3.0% 0
SparseLU-single 4.548 4.662 -2.5% 4.662 -2.5% 0
SparseLU-for 4.535 4.646 -2.4% 4.645 -2.4% 0
Health 1.111 1.066 4.0% 1.058 4.7% 1
Sort 1.089 1.095 -0.5% 1.155 -3.9% 3
Strassen 10.708 10.701 0.06% 11.161 -4.2% 65

Table 1: BOTS Execution Times

Adaptive # Times Thread Perf. Idle Ave. Time Increased
Time Count Reduced Change Time Idle Exec. Time

Health 1.058 1 4.7% 7.352 0.229 -0.043
Sort 1.155 3 -3.9% 1.779 0.055 0.066
Strassen 11.161 65 -4.2% 34.496 1.078 0.453

Table 2: Baseline Adaptive Scheduling Statistics

applications from the Barcelona OpenMP Tasks Suite
(BOTS), version 1.1, The suite comprises a set of task-
parallel applications from various domains with vary-
ing computational characteristics [17]. The following
benchmark components and inputs were used:

• Alignment: Aligns sequences of proteins using
dynamic programming (100 sequences)

• Health: Simulates a national health care system
over a series of timesteps (144 cities)

• NQueens: Finds solutions of the n-queens prob-
lem using backtrack search (n = 14)

• Sort: Sorts a vector using parallel mergesort with
sequential quicksort and insertion sort (128M
integers)

• SparseLU: Computes the LU factorization of a
sparse matrix (10000⇥ 10000 matrix, 100⇥ 100
submatrix blocks)

• Strassen: Computes a dense matrix multiply using
Strassen’s method (8192 x 8192 matrix)

Two of the tests, Alignment and SparseLU, have
multiple versions: one that uses a for loop to generate
the parallel tasks, and a second that has a single parent
task create the parallel tasks.

Table 1 shows the best result from ten trials of
each BOTS test in several circumstances. The standard
deviations were small. For the first set, we used the
default Qthreads scheduler with 32 threads. For the
second set, labeled “with RCRDaemon”, we enabled
monitoring of the activity via the RCRdaemon but not
throttling of threads. For the third set, labeled “with
Adaptive Scheduling”, we enabled throttling.

No memory-bound regions were detected in
NQueens, Alignment, or SparseLU. The thread count

was never limited, and performance degradation ranged
from 2.5% to 3.7%, in line with expectations. The over-
head of enabling Adaptive Scheduling is approximately
the cost of one core in compute-bound benchmarks. As
core counts rise this overhead will decrease.

Table 2 shows the performance of Health, Sort and
Strassen with memory contention in more detail.

4.1.1. Health. Performance on the Health benchmark
improves with fewer threads. We speculate that using
fewer threads provides better load balance and results
in less contention for memory resources. The program
is memory-bound for the entire execution. Adaptive
Scheduling reduces the thread count early in execution
and never raises the total until the program is com-
pleted. During the 1.058 second execution time (the
best time observed), 1/4 of the threads were idle for
1.047 seconds or 98.9%.

The benchmark fastest overall performance was with
with 1/4 threads idle for nearly all of the application’s
execution. Reducting thread count halved the number
of long latency (1024+ cycles) loads. The reduction
in long latency references may be the result of fewer
threads of execution producing a stream of references
that hit on DIMM cached pages with much greater
frequency, requiring fewer DIMM page reloads.

Since threads are idle for long periods, Adaptive
Scheduling could achieve energy savings with this
application even with today’s high-latency per-core
power adjustment controls.

4.1.2. Sort, Strassen. Sort idled threads 3 times dur-
ing execution. Each thread was idle for about 1/20th of
the total execution. At any time at most 1/4 of threads



Baseline Lazy # Times Idle Aggr # Times Idle
Adaptive Adaptive Diff Reducded Time Adaptive Diff Reduced Time

Health 1.058 1.052 4.8% 1 7.316 1.073 3.0% 1 7.419
Sort 1.155 1.224 -12.2% 1 8.125 1.217 -11.6% 1 8.298
Strassen 11.161 12.334 -15.3% 8 68.790 11.361 -6.2% 225 24.424

Table 3: Comparison of Throttling Strategies

Thread count
4 8 12 16 20 24 28 32

Qthreads 10.30 5.28 3.82 3.39 3.21 3.16 3.11 3.09
Adaptive 13.41 5.97 4.46 3.70 3.52 3.32 3.20 3.13

Table 4: Heat Execution times (best of 10)

are idled, corresponding to throttling set about 20%
of the time. The three throttling episodes results in
a slowdown approximating the amount of time spent
in an idle state. For relatively performance-neutral pro-
grams, the overall cost of throttling is heavily impacted
by the cost of entering and leaving any power saving
idle modes. The total overhead costs during execution
are dominated by this transition cost.

Running Strassen with Adaptive Scheduling results
in a 4.2% slowdown. Each thread is idle for just under
10% of the execution time. It was throttled almost 6
times every second during the 11+ seconds of execu-
tion. Strassen spent nearly half of the time throttling
execution, but no single throttling event lasted for
an extended period. Power saving opportunities were
short and would require lightweight per-core power
adjustment support.

4.1.3. Throttling Strategies. Parameters to the Adap-
tive Scheduling model control how quickly it responds
to the onset of resource contention and how quickly it
responds once the contention is over. We tested three
versions: the “Baseline” version, used in the previous
experiments, a “Lazy” version that is slow to recognize
contention and idle, and an “Aggressive” version that
determines contention and idle states very quickly.

Table 3 shows the performance the two variations on
the three memory-bound tests. On Health, Baseline and
Lazy performed nearly identically with only 1 throt-
tling event lasting almost all of execution. Aggressive
also had 1 event, but it occurred earlier in the execution
and total execution was slightly longer (1.4%). Lazy
on Sort and Strassen produced substantially fewer
transitions into and out of throttling. Both are throttled
for a much larger percentage of execution, but this
results in execution slowdowns above 12%. This shows
the importance of being able to use short throttling
sequences to reduce power consumption.

Aggressive, however, demonstrates that switching

too fast and too often does not necessarily perform
better. Execution time is higher than for Baseline and
for Strassen the amount of time in idle actually drops.
Adaptive Scheduling has the opportunity to save power
during the execution of memory-bound applications,
but the effectiveness will be determined by how fast
the system can recognize contention and how fast the
system can recover when the contention is removed.

4.2. Memory-Bound Tests

In addition to BOTS, we tested two memory-bound
applications Heat and NAS IS with Adaptive Schedul-
ing to better understand the execution effects of dy-
namically throttling parallelism.

4.2.1. Heat. Heat is a 2D heat diffusion simulation
from the example set in the MIT Cilk distribution [18]
that we ported to OpenMP 3.0. It is a small applica-
tion known to be effectively memory-bound for large
portions of its execution.

During the 3.13 seconds of execution, Adaptive
Scheduling reduced the number of threads 272 separate
times. On average each thread was idle for 0.49 sec
(total idle = 15.20 seconds) or 15.6%. Since at most
1/4 of threads are idle at any one time, threads were
limited for greater than 60% of the total execution.
Although the threads were limited, the performance
degradation was only 1.1%. Phases of Heat vary in
memory intensity, and dynamic tracking of hardware
performance allows substantial periods of core idling
with minimal impact on application performance.

4.2.2. NAS IS. The memory-bound behavior of the
IS benchmark from the NAS Parallel Benchmark suite
suggested it as a good candidate for Adaptive Schedul-
ing. Our evaluation used the Class ’C’ problem size.
Reported results are the best of ten trials for each



(a): IS 32 threads (b): IS 24 threads

Figure 2: RCRTool Graphs for one iteration of NAS IS

Thread count
8 12 16 20 24 28 32

static (GNU OMP) 3.68 3.01 2.77 2.70 2.77 2.91 3.05
static (Qthreads) 3.54 2.87 2.65 2.59 2.60 2.71 3.05

guided (Qthreads) 3.51 2.88 2.69 2.68 2.80 2.96 3.14
guided (Adaptive) 3.98 3.85 3.29 3.43 3.18 3.24 3.35

Table 5: NAS IS Execution times (best of 10)

configuration, and for all tests the standard deviations
of the 10 runs was small.

The GNU OpenMP implementation using static
scheduling of loop iterations, shown in Table 5, results
in execution times rising from 2.70 to 3.05 (12.9%) as
the hardware thread counts rises 20 to 32. Switching
to Qthreads increased the performance of lower thread
counts but the performance of 32 threads was constant
for a greater performance degradation of 17.7% If
the thread count is reduced automatically to 24 (6
per core), then we expected that falloff would be
eliminated. In practice, two problems were discovered:
explicit static scheduling of the loop iterations and the
initial thread count determining the amount of work.

Static Scheduling. The original implementation
of IS uses static scheduling of the loop iterations to
cores. This exploits memory locality, maintains load
balance, and allows compiler optimization of threading
overheads. However, it also prevents thread assign-
ment to cores from being modified during execution,
effectively preventing Adaptive Scheduling. Iterations
are assigned to the threads before the loop starts, and
they never need to enter the runtime to get more
loop iterations. As implemented, there is no hook for
Adaptive Scheduling to reduce the active worker count.
Even if the hook existed, the requirement that the
threads execute on specific cores would greatly reduce
the potential for dynamic improvement. Threads would

halt and wait for the dynamic adaptation to recognize
an idle state before completing the loop. This overhead
would enevitably be high and starvation could easily
occur if threads do work outside the loop.

We changed the loop iteration scheduling of IS to
guided self-scheduling. This resulted in a maximum
3.5% increase in execution time, a result of addi-
tional overhead acquiring loop iterations. The addi-
tional overheads were only partially offset by better
load balance for all but the lowest thread counts.

Increased Work. Even with the change to guided
self-scheduling of loop iterations, Adaptive Scheduling
was 6.6% slower than normal Qthreads. To understand
this performance degradation required a more detailed
study of the IS implementation. The algorithm per-
forms 10 iterations of three loops. The first histograms
the array multiple buckets (one per thread to eliminate
data races), the second compresses the buckets to a
single bucket, and the third assigns the data to the
correct location. The difficultly is that the work in the
second step is proportional to the number of threads
potentially doing the work. Even when the thread count
is reduced, the extra work is done (by fewer threads)
and the overall execution time increased.

Figure 2 shows RCRTool snapshots of a 32 thread
execution and a 24 thread execution. RCRTool allows
the user to examine information about each point.
Although 32 threads has slightly higher memory con-



currency (24.5 vs 23), looking at the first and last point
of flat memory usage (the histogram step), both graphs
have the same number of points (24) and execution
times of about 0.165 seconds.

Measuring to the beginning of the next loop (com-
press and assign steps), 24 threads only takes .115
seconds while 32 threads takes .144 secs. Each array
to be compressed takes about .004 seconds (assuming
several of the points correspond to the assignment of
the correct locations). For this size problem, the system
has almost as much work assembling the parallel
pieces as actual sorting.

The net effect of these two overheads for IS is that
although 1/4 of threads can be disabled by adaptive
scheduling for the duration of the execution. Throttling
occurs 6 times during execution for about 83% of the
total execution time and each thread was idled for
about 0.931 seconds.

5. Related Work

In a previous study [19] we used a method similar to
working set scheduling [20] to combine cache and TLB
miss rates with throughput measurements to throttle the
number of concurrent queries in the relational database
system of a three-layer architecture running a transac-
tion processing benchmark. Without throttling, system
throughput exhibited a classic “mortar shot” curve
in which throughput decreased with increasing load.
Throttling stabilized this at near peak performance.

Several research efforts have focused on mitigating
memory contention for concurrently executing appli-
cations with independent address spaces. Monitor-
ing systems have been introduced at the operating
system level to provide hints to the OS scheduler
when memory contention is detected [21], [22], [23],
[24]. These schedulers attempt to schedule memory-
bound and cpu-bound processes together. Compiler-
transformation techniques have also been proposed as
a means to mitigate process contention for application
quality of service [25], [26].

Other research activities have focused on reducing
memory contention for concurrently executing threads
with shared address spaces. Prior works have focused
on data parallel applications, disabling threads in par-
allel loops in the presence of contention [27], [28]. Our
contention management strategy has been designed for
both task-parallel and data-parallel OpenMP programs.

Another strategy for reducing memory contention
uses replacement libraries for thread creation, syn-
chronization, and communication to renegotiate the
mapping of user-level threads to operating system (OS)
resources. The replacement libraries can either map

several user-level threads to a single OS thread [29]
or map user-level threads to OS processes [30]. These
techniques are library-specific, in that they may pro-
duce unsafe transformations for programs that use
synchronization primitives external to libraries that
have been replaced. A third technique is to use a cache
simulation to model the effects of cache contention,
typically at a performance expense relative to executing
native code [31], [32].

6. Future Work and Conclusions

We expect more memory-bound applications in the
future, because of trends in both computer architecture
(reduced memory bandwidth per core) and applications
(dynamic adaptive and sparse). Energy consumption
is also becoming a major issue for both Exascale
computation and mobile devices. Adaptive Scheduling
uses performance introspection to adjust application
demands to current system conditions. The overhead
cost is low, and we expect it to fall as core counts rise.
Reduced contention in some cases improves perfor-
mance with better load balance and/or improved cache
utilization. More commonly the impact on performance
is minimal. Throttling provides the software the ability
to dynamically reduce power consumption.

To effectively use techniques like throttling and
Adaptive Scheduling to reduce power consumption,
new hardware features must be available to the run-
time. The runtime reacts to system load, but it does not
have knowledge of how long contention will continue.
To effectively save energy, the runtime will require
a hardware mechanism for core power reduction that
can be reversed in 10’s or low 100’s of nanoseconds
without OS intervention. Such a mechanism could be
effectively used in a many-core system to save power
without substantially impacting performance.

Adaptive Scheduling is early work using perfor-
mance introspection to improve application perfor-
mance. Work will continue to find better dynamic
models to determine times to transition into and out of
throttled execution. Shared resources beside memory
concurrency will be examined, including both hard-
ware, e.g., shared cache performance and network load,
and software resources, e.g., file I/O. Our interests also
include better methods to relate execution performance
to the application tuner, which will include understand-
ing when throttling occurs and its effects.
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